若點(diǎn)O和點(diǎn)F分別為橢圓
x2
4
+
y2
3
=1
的中心和左焦點(diǎn),點(diǎn)P為橢圓上的任意一點(diǎn),則
OP
FP
的最大值為( 。
A、2B、3C、6D、8
分析:先求出左焦點(diǎn)坐標(biāo)F,設(shè)P(x0,y0),根據(jù)P(x0,y0)在橢圓上可得到x0、y0的關(guān)系式,表示出向量
FP
、
OP
,根據(jù)數(shù)量積的運(yùn)算將x0、y0的關(guān)系式代入組成二次函數(shù)進(jìn)而可確定答案.
解答:解:由題意,F(xiàn)(-1,0),設(shè)點(diǎn)P(x0,y0),則有
x02
4
+
y02
3
=1
,解得y02=3(1-
x02
4
)
,
因?yàn)?span dealflag="1" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">
FP
=(x0+1,y0),
OP
=(x0,y0)

所以
OP
FP
=x0(x0+1)+y02
=
OP
FP
=x0(x0+1)+
3(1-
x02
4
)
=
x02
4
+x0+3
,
此二次函數(shù)對(duì)應(yīng)的拋物線的對(duì)稱(chēng)軸為x0=-2,
因?yàn)?2≤x0≤2,所以當(dāng)x0=2時(shí),
OP
FP
取得最大值
22
4
+2+3=6
,
故選C.
點(diǎn)評(píng):本題考查橢圓的方程、幾何性質(zhì)、平面向量的數(shù)量積的坐標(biāo)運(yùn)算、二次函數(shù)的單調(diào)性與最值等,考查了同學(xué)們對(duì)基礎(chǔ)知識(shí)的熟練程序以及知識(shí)的綜合應(yīng)用能力、運(yùn)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若點(diǎn)O和點(diǎn)F分別為橢圓
x2
4
+
y2
3
=1的中心和左焦點(diǎn),點(diǎn)P為橢圓上點(diǎn)的任意一點(diǎn),則
OP
FP
的最大值為
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若點(diǎn)O和點(diǎn)F分別為橢圓
x2
9
+
y2
5
=1
的中心和左焦點(diǎn),點(diǎn)P為橢圓上任意一點(diǎn),則
OP
FP
的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•上海)若點(diǎn)O和點(diǎn)F分別為橢圓
x22
+y2=1的中心和左焦點(diǎn),點(diǎn)P為橢圓上的任意一點(diǎn),則|OP|2+|PF|2的最小值為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•包頭一模)若點(diǎn)O和點(diǎn)F分別為雙曲線
x2
4
-
y2
5
=1
的中心和左焦點(diǎn),點(diǎn)P為雙曲線右支上的任意一點(diǎn),則
OP
FP
的最小值為(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案