【題目】中國有個名句“運籌帷幄之中,決勝千里之外”.其中的“籌”原意是指《孫子算經(jīng)》中記載的算籌,古代是用算籌來進行計算,算籌是將幾寸長的小竹棍擺在平面上進行運算,算籌的擺放形式有縱橫兩種形式,如下表:

表示一個多位數(shù)時,像阿拉伯計數(shù)一樣,把各個數(shù)位的數(shù)碼從左到右排列,但各位數(shù)碼的籌式需要縱橫相間,個位,百位,萬位數(shù)用縱式表示,十位,千位,十萬位用橫式表示,以此類推,例如6613用算籌表示就是: ,則算籌式 表示的數(shù)字為

【答案】368
【解析】解:由題意各位數(shù)碼的籌式需要縱橫相間,

個位,百位,萬位數(shù)用縱式表示,十位,千位,十萬位用橫式表示,

算籌式 表示368,

所以答案是:368

【考點精析】本題主要考查了歸納推理的相關(guān)知識點,需要掌握根據(jù)一類事物的部分對象具有某種性質(zhì),退出這類事物的所有對象都具有這種性質(zhì)的推理,叫做歸納推理才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,以O(shè)為極點,x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcosθ=a(a>0),Q為l上一點,以O(shè)Q為邊作等邊三角形OPQ,且O、P、Q三點按逆時針方向排列.
(Ⅰ)當(dāng)點Q在l上運動時,求點P運動軌跡的直角坐標(biāo)方程;
(Ⅱ)若曲線C:x2+y2=a2 , 經(jīng)過伸縮變換 得到曲線C′,試判斷點P的軌跡與曲線C′是否有交點,如果有,請求出交點的直角坐標(biāo),沒有則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=|ax﹣1|,若實數(shù)a>0,不等式f(x)≤3的解集是{x|﹣1≤x≤2}.
(Ⅰ)求a的值;
(Ⅱ)若 <|k|存在實數(shù)解,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國有個名句“運籌帷幄之中,決勝千里之外”.其中的“籌”原意是指《孫子算經(jīng)》中記載的算籌,古代是用算籌來進行計算,算籌是將幾寸長的小竹棍擺在平面上進行運算,算籌的擺放形式有縱橫兩種形式,如下表:

表示一個多位數(shù)時,像阿拉伯計數(shù)一樣,把各個數(shù)位的數(shù)碼從左到右排列,但各位數(shù)碼的籌式需要縱橫相間,個位,百位,萬位數(shù)用縱式表示,十位,千位,十萬位用橫式表示,以此類推,例如6613用算籌表示就是: ,則5288用算籌式可表示為( 。
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點P是圓F1:(x﹣1)2+y2=8上任意一點,點F2與點F1關(guān)于原點對稱,線段PF2的垂直平分線分別與PF1 , PF2交于M,N兩點.
(1)求點M的軌跡C的方程;
(2)過點 的動直線l與點M的軌跡C交于A,B兩點,在y軸上是否存在定點Q,使以AB為直徑的圓恒過這個點?若存在,求出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形ABCD中,AB∥CD, ,四邊形ACFE為矩形,且CF⊥平面ABCD,AD=CD=BC=CF=1.

(1)求證:EF⊥平面BCF;
(2)點M在線段EF(含端點)上運動,當(dāng)點M在什么位置時,平面MAB與平面FCB所成銳二面角最大,并求此時二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四支足球隊進行單循環(huán)比賽(每兩隊比賽一場),每場比賽勝者得3分,負(fù)者得0分,平局雙方各得1分.比賽結(jié)束后發(fā)現(xiàn)沒有足球隊全勝,且四隊得分各不相同,則所有比賽中最多可能出現(xiàn)的平局場數(shù)是( 。
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),若f(x)為偶函數(shù),且在(0,1)上存在極大值,則f′(x)的圖象可能為(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法錯誤的是( )
A.命題“若x2-5x+6=0,則x=2”的逆否命題是“若x≠2,則x2-5x+6≠0”
B.若命題p:x0∈R, +x0+1<0,則 x∈R,x2+x+1≥0
C.若x,y∈R,則“x=y(tǒng)”是“xy≥ ”的充要條件
D.已知命題p和q,若“p或q”為假命題,則命題p與q中必有一真一假

查看答案和解析>>

同步練習(xí)冊答案