【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性及極值;
(Ⅱ)若不等式在內(nèi)恒成立,求證:.
【答案】(1)見解析;(2)見解析.
【解析】試題分析:(1)函數(shù)求導(dǎo)得,討論和演技單調(diào)性及極值即可;
(2)當(dāng)時,在內(nèi)單調(diào)遞增,可知在內(nèi)不恒成立,當(dāng)時, ,即,所以.令,進(jìn)而通過求導(dǎo)即可得最值.
試題解析:
(1)由題意得.
當(dāng),即時,,在內(nèi)單調(diào)遞增,沒有極值.
當(dāng),即,
令,得,
當(dāng)時,,單調(diào)遞減;
當(dāng)時,,單調(diào)遞增,
故當(dāng)時,取得最小值,無極大值.
綜上所述,當(dāng)時,在內(nèi)單調(diào)遞增,沒有極值;
當(dāng)時,在區(qū)間內(nèi)單調(diào)遞減,在區(qū)間內(nèi)單調(diào)遞增,的極小值為,無極大值.
(2)由(1),知當(dāng)時,在內(nèi)單調(diào)遞增,
當(dāng)時,成立.
當(dāng)時,令為和中較小的數(shù),
所以,且.
則,.
所以,
與恒成立矛盾,應(yīng)舍去.
當(dāng)時, ,
即,
所以.
令,
則.
令,得,
令,得,
故在區(qū)間內(nèi)單調(diào)遞增,
在區(qū)間內(nèi)單調(diào)遞減.
故,
即當(dāng)時,.
所以.
所以.
而,
所以.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=4tanxsin( ﹣x)cos(x﹣ )﹣ .
(1)求f(x)的定義域與最小正周期;
(2)討論f(x)在區(qū)間[﹣ , ]上的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某上市股票在30天內(nèi)每股的交易價格P(元)與時間t(天)組成有序數(shù)對(t,P),點(t,P)落在圖中的兩條線段上(如圖).該股票在30天內(nèi)(包括第30天)的日交易量Q(萬股)與時間t(天)的函數(shù)關(guān)系式為Q=40﹣t(0≤t≤30且t∈N).
(1)根據(jù)提供的圖象,求出該種股票每股的交易價格P(元)與時間t(天)所滿足的函數(shù)關(guān)系式;
(2)用y(萬元)表示該股票日交易額(日交易額=日交易量×每股的交易價格),寫出y關(guān)于t的函數(shù)關(guān)系式,并求出這30天中第幾天日交易額最大,最大值為多少.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知公差不為0的等差數(shù)列的前三項和為6,且成等比數(shù)列.
(1)求數(shù)列的通項公式;
(2)設(shè),數(shù)列的前項和為,求使的的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,∠ACB=90°,SA⊥平面ABC,AD⊥SC.求證:
(1)BC⊥平面SAC;
(2)AD⊥平面SBC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(1)若,求曲線在點處的切線方程;
(2)若不等式對任意恒成立.(i)求實數(shù)的取值范圍;(ii)試比較與的大小,并給出證明(為自然對數(shù)的底數(shù), ).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com