已知函數(shù)f(x),g(x)分別如下表示:
x -1 0 1
g(x) 1 0 -1
f(x)=
1,x>0
0,x=0
-1,x<0
,則g[f(2)]的值為(  )
分析:根據(jù)表格確定函數(shù)g(x)的對應值,然后結合函數(shù)f(x)的表達式,進行求解即可.
解答:解:∵f(x)=
1,x>0
0,x=0
-1,x<0

∴f(2)=1,
∴g[f(2)]=g(1),
由表格可知g(1)=-1,
故選A.
點評:本題主要考查利用分段函數(shù)和表格進行求值,比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

9、已知函數(shù)f(x),g(x)分別由如表給出:

則滿足f[g(x)]<g[f(x)]的x的值
1和3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x),g(x)分別由右表給出,則 f[g(2)]的值為( 。
x 1 2 3
f(x) 4 1 2
x 1 2 3
g(x) 3 2 1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)和g(x)的圖象關于原點對稱,且f(x)=x2+2x.
(Ⅰ) 求函數(shù)g(x)的解析式;
(Ⅱ)解不等式g(x)≥f(x)-|x-1|;
(Ⅲ)若h(x)=g(x)-λf(x)+1在[-1,1]上是增函數(shù),求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x),g(x)分別由下表給出
x 1 2 3
f(x) 1 3 2
x 1 2 3
g(x) 3 2 1
則f[g(1)]的值為
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)和g(x)都是定義在R上的奇函數(shù),設F(x)=a2f(x)+bg(x)+2,若F(2)=4,則F(-2)=
0
0

查看答案和解析>>

同步練習冊答案