設(shè), .
(1)當(dāng)時(shí),求曲線在處的切線方程;
(2)如果存在,使得成立,求滿足上述條件的最大整數(shù);
(3)如果對(duì)任意的,都有成立,求實(shí)數(shù)的取值范圍.
【解析】(1)求出切點(diǎn)坐標(biāo)和切線斜率,寫出切線方程;(2)存在,轉(zhuǎn)化解決;(3)任意的,都有成立即恒成立,等價(jià)于恒成立
:(1)當(dāng)時(shí),,,,,
所以曲線在處的切線方程為; 4分
(2)存在,使得成立,
|
|||||
遞減 |
極(最)小值 |
遞增 |
等價(jià)于:,
考察,
,
由上表可知:,
,
所以滿足條件的最大整數(shù); 8分
3)當(dāng)時(shí),恒成立,等價(jià)于恒成立,
記,, 。
記,,由于,
, 所以在上遞減,又h/(1)=0,
當(dāng)時(shí),,時(shí),,
即函數(shù)在區(qū)間上遞增,在區(qū)間上遞減,
所以,所以。 12分
(3)另解:對(duì)任意的,都有成立
等價(jià)于:在區(qū)間上,函數(shù)的最小值不小于的最大值,
由(2)知,在區(qū)間上,的最大值為。
,下證當(dāng)時(shí),在區(qū)間上,函數(shù)恒成立。
當(dāng)且時(shí),,
記,,
當(dāng),;當(dāng),
,
所以函數(shù)在區(qū)間上遞減,在區(qū)間上遞增,
,即,
所以當(dāng)且時(shí),成立,
即對(duì)任意,都有。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年福建省高三12月月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)函數(shù).
(1)當(dāng)時(shí),求曲線在處的切線方程;
(2)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(3)在(2)的條件下,設(shè)函數(shù),若對(duì)于 [1,2], [0,1],使成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年浙江省高三上學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)函數(shù),.
(1)當(dāng)時(shí),函數(shù)在處有極小值,求函數(shù)的單調(diào)遞增區(qū)間;
(2)若函數(shù)和有相同的極大值,且函數(shù)在區(qū)間上的最大值為,求實(shí)數(shù)的值(其中是自然對(duì)數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆吉林省長(zhǎng)春市高二下學(xué)期期初理科數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè),函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)增區(qū)間;
(2)若時(shí),不等式恒成立,實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年安徽省高三第一次質(zhì)量檢測(cè)理科數(shù)學(xué) 題型:解答題
(本小題滿分12分)設(shè)函數(shù)。
(1)當(dāng)時(shí),求的單調(diào)區(qū)間。
(2)若在上的最大值為,求的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年河南省高三上學(xué)期第一次月考理科數(shù)學(xué)卷 題型:解答題
(12分)設(shè)集合,.
(1)當(dāng)時(shí),求A的非空真子集的個(gè)數(shù);
(2)若B=,求m的取值范圍; (3)若,求m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com