復數(shù)
2a+i
-1+2i
(i是虛數(shù)單位)為純虛數(shù),則實數(shù)a的值為( 。
A、
1
4
B、-
1
4
C、1
D、-1
考點:復數(shù)代數(shù)形式的乘除運算
專題:數(shù)系的擴充和復數(shù)
分析:利用復數(shù)代數(shù)形式的乘除運算化簡,然后由實部等于0且虛部不等于0求解a的值.
解答: 解:
2a+i
-1+2i
=
(2a+i)(-1-2i)
(-1+2i)(-1-2i)
=
(-2a+2)+(-4a-1)i
5
為純虛數(shù),
-2a+2=0
-4a-1≠0
,解得:a=1.
故選:C.
點評:本題考查了復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)的基本概念,是基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,BC=10,周長為25,求cosA的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|-2≤x≤4},B={x|x>a}.
(1)若A∩B≠A,求實數(shù)a的取值范圍;
(2)若A∩B≠∅,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求使?jié)M足方程x2+y2+2i=r2+(x-y)i的實數(shù)x與y存在的正數(shù)r的集合,并在r=
2
時,求滿足上述方程的x與y及復數(shù)x+yi.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

化簡:
tan(π-α)sin2(α+
π
2
)cos(2π-α)
cos3(-α-π)tan(α-2π)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若{an}是無窮等比數(shù)列,則“首項a1>0,公比0<q<1”是“數(shù)列{an}存在最大項”的.
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線過點(
3
,2),且它的漸近線方程是y=±2x,則此雙曲線的方程是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓γ:
x2
a2
+y2
=1(常數(shù)a>1)的左頂點R,點A(a,1),B(-a,1),O為坐標原點;
(1)若P是橢圓γ上任意一點,
OP
=m
OA
+n
OB
,求m2+n2的值;
(2)設Q是橢圓γ上任意一點,S(3a,0),求
QS
QR
的取值范圍;
(3)設M(x1,y1),N(x2,y2)是橢圓γ上的兩個動點,滿足kOM•kON=kOA•kOB,試探究△OMN的面積是否為定值,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx+cosx-(
6
π
-
9
2
)x的導數(shù)為f′(x),且數(shù)列{an}滿足an+1+an=nf′(
π
6
)+3(n∈N*).
(1)若數(shù)列{an}是等差數(shù)列,求a1的值:
(2)若對任意n∈N*,都有an+2n2≥0成立,求a1的取值范圍.

查看答案和解析>>

同步練習冊答案