1.已知向量$\overrightarrow a$=(-1,2),$\overrightarrow b$=(1,-2y),若$\overrightarrow a$∥$\overrightarrow b$,則 y 的值是1.

分析 利用向量共線定理即可得出.

解答 解:∵$\overrightarrow a$∥$\overrightarrow b$,則2-(-1)×(-2y)=0,解得y=1.
故答案為:1.

點評 本題考查了向量共線定理,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

11.閱讀下面程序框圖,若輸入x=-2該程序輸出的結果是6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.下列說法正確的是(  )
A.截距相等的直線都可以用方程$\frac{x}{a}+\frac{y}{a}=1$表示
B.方程x+my-2=0(m∈R)不能表示平行y軸的直線
C.經(jīng)過點P(1,1),傾斜角為θ的直線方程為y-1=tanθ(x-1)
D.經(jīng)過兩點P1(x1,y1),P2(x2,y2)(x1≠x2)的直線方程為$y-{y_1}=\frac{{{y_2}-{y_1}}}{{{x_2}-{x_1}}}(x-{x_1})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.設x,y滿足約束條件$\left\{\begin{array}{l}{x-y≥0}&{\;}\\{x+y≤2}&{\;}\\{y≥0}&{\;}\end{array}\right.$,當且僅當x=y=1時,z=ax+y取得最大值,則實數(shù)a的取值范圍是(  )
A.(-1,1)B.(-∞,1)C.(-∞,-1)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.設全集I={0,2,4,6,8,10},集合M={4,8},則∁IM=(  )
A.{4,8}B.{0,2,4,10}C.{0,2,10}D.{0,2,6,10}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知A(-1,1,2)、B(1,0,-1),設D在直線AB上,且$\overrightarrow{AD}$=2$\overrightarrow{DB}$,設C(λ,$\frac{1}{3}$+λ,1+λ),若CD⊥AB,則λ的值為( 。
A.$\frac{11}{6}$B.-$\frac{11}{6}$C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知$f(x)=\frac{{{x^2}+1}}{ax+b}$是奇函數(shù),且滿足f(1)=2.
(Ⅰ)求實數(shù)a,b,并確定函數(shù)f(x)的解析式;
(Ⅱ)用定義證明f(x)在[1,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.設a=log32,b=log2$\frac{1}{8}$,c=$\sqrt{2}$,則(  )
A.a>b>cB.c>b>aC.a>c>bD.c>a>b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知數(shù)列$\sqrt{3},3,\sqrt{15},…,\sqrt{3(2n-1)},…$,那么9是此數(shù)列的第(  )項.
A.12B.13C.14D.15

查看答案和解析>>

同步練習冊答案