設(shè)函數(shù),曲線過點,且在點處的切線斜率為2.
(1)求a和b的值; (2)證明:.
(1); (2)詳見試題解析.
解析試題分析:(1) 首先由曲線過點列方程求得的值.再求的導(dǎo)數(shù),利用導(dǎo)數(shù)的幾何意義得列方程,解這個方程即可得的值;(2) 由(1)可得的解析式要證,構(gòu)造函數(shù)只要證在恒成立即可,為此可利用導(dǎo)數(shù)求函數(shù)在上的最小值,通過,來證明,進而證明.
試題解析:(1)解:曲線過點又曲線在點處的切線斜率為2,把代入上式得
(2)證明:由(1)得要證,構(gòu)造函數(shù)只要證在恒成立即可.
當時,在內(nèi)是減函數(shù);
當時,在上是增函數(shù),當時,取最小值
.
考點:1.導(dǎo)數(shù)的幾何意義;2.利用導(dǎo)數(shù)證明不等式.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),(且).
(1)設(shè),令,試判斷函數(shù)在上的單調(diào)性并證明你的結(jié)論;
(2)若且的定義域和值域都是,求的最大值;
(3)若不等式對恒成立,求實數(shù)的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的圖象如圖,直線在原點處與函數(shù)圖象相切,且此切線與函數(shù)圖象所圍成的區(qū)域(陰影)面積為.
(1)求的解析式;
(2)若常數(shù),求函數(shù)在區(qū)間上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)當時,求函數(shù)的單調(diào)區(qū)間;
(2)當函數(shù)自變量的取值區(qū)間與對應(yīng)函數(shù)值的取值區(qū)間相同時,這樣的區(qū)間稱為函數(shù)的保值區(qū)間.,試問函數(shù)在上是否存在保值區(qū)間?若存在,請求出一個保值區(qū)間;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(Ⅰ)當時,求曲線在點處的切線方程;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)若函數(shù)沒有零點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,函數(shù).
(1)當時,寫出函數(shù)的單調(diào)遞增區(qū)間;
(2)當時,求函數(shù)在區(qū)間[1,2]上的最小值;
(3)設(shè),函數(shù)在(m,n)上既有最大值又有最小值,請分別求出m,n的取值范圍(用a表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)。
(Ⅰ)若,求函數(shù)的單調(diào)區(qū)間并比較與的大小關(guān)系
(Ⅱ)若函數(shù)的圖象在點處的切線的傾斜角為,對于任意的,函數(shù)在區(qū)間上總不是單調(diào)函數(shù),求的取值范圍;
(Ⅲ)求證:。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com