已知函數的圖象如圖,直線在原點處與函數圖象相切,且此切線與函數圖象所圍成的區(qū)域(陰影)面積為.
(1)求的解析式;
(2)若常數,求函數在區(qū)間上的最大值.
(1);
(2)當時,;當時,.
解析試題分析:(1)由條件知,,,代入可得、.再用定積分表示出所圍成的區(qū)域(陰影)面積,由面積為解得,從而得到的解析式;(2)由(1)知,再列出,的取值變化情況,又,結合圖像即可得當時,;當時,.
科目:高中數學
來源:
題型:解答題
設函數,其中.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
試題解析:(1)由得, 2分
.由得, 4分
∴,則易知圖中所圍成的區(qū)域(陰影)面積為
從而得,∴. 8分
(2)由(1)知.
的取值變化情況如下: 2 單調
遞增極大值
(1)若,求在的最小值;
(2)如果在定義域內既有極大值又有極小值,求實數的取值范圍;
(3)是否存在最小的正整數,使得當時,不等式恒成立.
版權聲明:本站所有文章,圖片來源于網絡,著作權及版權歸原作者所有,轉載無意侵犯版權,如有侵權,請作者速來函告知,我們將盡快處理,聯系qq:3310059649。
ICP備案序號: 滬ICP備07509807號-10 鄂公網安備42018502000812號