分析:(1)a=1時(shí),求出導(dǎo)數(shù)f′(x),則切線斜率為f′(1),易求f(1),利用點(diǎn)斜式即可求得切線方程;
(2)易求f(x)的定義域是(0,+∞),解方程f′(x)=0可得x=
或x=
,按兩根
、
的大小對(duì)a分類討論解不等式f′(x)>0,f′(x)<0可得單調(diào)區(qū)間;
(3)設(shè)g(x)=f(x)+2x=ax
2-ax+lnx,由題意知,g(x)在(0,+∞)上單調(diào)遞增,只需g′(x)≥0在(0,+∞)上恒成立,分a=0、a≠0兩種情況討論,轉(zhuǎn)化為函數(shù)最值即可;
解答:解:(1)當(dāng)a=1時(shí),f(x)=x
2-3x+lnx,f′(x)=2x-3+
,
因?yàn)閒′(1)=0,f(1)=-2,所以切線方程是y=-2;
(2)函數(shù)f(x)=ax
2-(a+2)x+lnx的定義域是(0,+∞),
f′(x)=2ax-(a+2)+
=
(x>0),
令f′(x)=0,即f′(x)=
=
=0,
所以x=
或x=
,
①當(dāng)a>2時(shí),令f′(x)>0得,x>
或0<x<
,f′(x)<0得
<x<
,
②當(dāng)a=2時(shí),f′(x)≥0恒成立,
③當(dāng)0<a<2時(shí),令f′(x)>0得,x>
或0<x<
,f′(x)<0得
<x<
,
④a<0時(shí),令f′(x)>0得0<x<
,f′(x)<0得x>
,
所以當(dāng)a>2時(shí),f(x)的單調(diào)增區(qū)間為(0,
),(
,+∞)單調(diào)減區(qū)間為(
,);
當(dāng)a=2時(shí),f(x)在(0,+∞)上單調(diào)遞增;
當(dāng)0<a<2時(shí),f(x)在(0,
),(
,+∞)上單調(diào)遞增,在(
,)上單調(diào)遞減;
當(dāng)a≤0時(shí),f(x)在(0,
)上單調(diào)遞增,(
,+∞)上單調(diào)遞減.
(3)設(shè)g(x)=f(x)+2x,則g(x)=ax
2-ax+lnx,
只要g(x)在(0,+∞)上單調(diào)遞增即可,
而g′(x)=2ax-a+
=
,
當(dāng)a=0時(shí),g′(x)=
>0,此時(shí)g(x)在(0,+∞)上單調(diào)遞增;
當(dāng)a≠0時(shí),只需g′(x)≥0在(0,+∞)上恒成立,
因?yàn)閤∈(0,+∞),只要2ax
2-ax+1≥0,
則需要a>0,
對(duì)于函數(shù)y=2ax
2-ax+1,過定點(diǎn)(0,1),對(duì)稱軸x=
>0,只需△=a
2-8a≤0,即0<a≤8,
綜上,0≤a≤8.