精英家教網 > 高中數學 > 題目詳情
已知數列{an}的通項公式為an=n2-n-30.
(1)求數列的前三項,60是此數列的第幾項?
(2)n為何值時,an=0,an>0,an<0?
(3)該數列前n項和Sn是否存在最值?說明理由.
(1)第10項   (2)0<n<6(n∈N*)   (3)不存在,見解析
解:(1)由an=n2-n-30,得
a1=1-1-30=-30,
a2=22-2-30=-28,
a3=32-3-30=-24.
設an=60,則60=n2-n-30.
解之得n=10或n=-9(舍去).
∴60是此數列的第10項.
(2)令an=n2-n-30=0,
解得n=6或n=-5(舍去),∴a6=0.
令n2-n-30>0,
解得n>6或n<-5(舍去).
∴當n>6(n∈N*)時,an>0.
令n2-n-30<0,解得0<n<6,
∴當0<n<6(n∈N*)時,an<0.
(3)Sn存在最小值,不存在最大值.
由an=n2-n-30=(n-)2-30,(n∈N*)
知{an}是遞增數列,且
a1<a2<…<a5<a6=0<a7<a8<a9<…,
故Sn存在最小值S5=S6,不存在Sn的最大值.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知數列的首項,的前項和,且
(1)若記,求數列的通項公式;
(2)記,證明:

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

在等差數列{an}中,an>0,且a1+a2+…+a10=30,則a5·a6的最大值是________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知數列{an}為等差數列,若<-1,且它們的前n項和Sn有最大值,則使Sn>0的n的最大值為________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

在等差數列{an}中,已知a4=7,a3+a6=16,an=31,則n為(  )
A.13B.14C.15D.16

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知各項為實數的數列是等比數列, 且數列滿足:對任意正整數,有.
(1)求數列與數列的通項公式;
(2)在數列的任意相鄰兩項 之間插入后,得到一個新的數列. 求數列的前2012項之和.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知數列滿足,,且,則         

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

意大利著名數學家斐波那契在研究兔子繁殖問題時,發(fā)現有這樣一組數: 1,1,2,3,5,8,13,其中從第三個數起,每一個數都等于他前而兩個數的和.該數列是一個非常美麗、和諧的數列,有很多奇妙的屬性.比如:隨著數列項數的增加,前一項與后一項之比越逼近黃金分割0.6180339887 .人們稱該數列{an}為“斐波那契數列”.若把該數列{an}的每一項除以4所得的余數按相對應的順序組成新數列{bn},在數列{bn}中第2014項的值是_______]

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

2011是等差數列:1,4,7,10 的第(    )項。
A.669B.670C.671D.672

查看答案和解析>>

同步練習冊答案