如圖,在三棱錐中,已知△是正三角形,平面,,的中點,在棱上,且,
(1)求證:平面;
(2)求平面與平面所成的銳二面角的余弦值;
(3)若的中點,問上是否存在一點,使平面?若存在,說明點的位置;若不存在,試說明理由.
解一:(1)取AC的中點H,因為 ABBC,所以 BHAC
因為 AF=3FC,所以 FCH的中點.
因為 EBC的中點,所以 EFBH.則EFAC
因為 △BCD是正三角形,所以 DEBC
因為 AB⊥平面BCD,所以 ABDE
因為 ABBCB,所以 DE⊥平面ABC.所以 DEAC
因為 DEEFE,所以 AC⊥平面DEF
(2)
(3)存在這樣的點N,
CN時,MN∥平面DEF
CM,設(shè)CMDEO,連OF
由條件知,O為△BCD的重心,COCM
所以 當CFCN時,MNOF.所以 CN
解二:建立直角坐標系
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,四棱錐的底面為菱形,平面,分別為、的中點。
(I)求證:平面;
  (Ⅱ)求三棱錐的體積;
(Ⅲ)求平面與平面所成的銳二面角大小的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)如圖所示,在四棱臺中, 底面ABCD是正方形,且底面 , .
(1)求異面直線所成角的余弦值;
(2)試在平面中確定一個點,使得平面;
(3)在(2)的條件下,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題8分)
如圖,正方形ABCD和四邊形ACEF所在的平面互相垂直. EF//AC,AB=,CE=EF=1,.
(1)求證:AF//平面BDE;
(2)求異面直線AB與DE所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)
如圖,四棱錐P—ABCD的底面ABCD為一直角梯形,其中BA⊥AD,CD⊥AD,CD=AD=2AB,PA⊥底面ABCD,E是PC的中點.
(Ⅰ)求證:BE//平面PAD;
(Ⅱ)若BE⊥平面PCD。
(i)求異面直線PD與BC所成角的余弦值;
(ii)求二面角E—BD—C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)如圖在邊長為1正方體中,以正方體的三條棱所在直線為軸建立空間直角坐標系,
(I)若點在線段上,且滿足,試寫出點的坐標并寫出關(guān)于縱坐標軸軸的對稱點的坐標;
(Ⅱ)在線段上找一點,使得點到點的距離最小,求出點的坐標。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分6分)
(如圖)在底面半徑為2母線長為4的圓錐中內(nèi)接一個高為的圓柱,求圓柱的表面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,ABCD-A1B1C1D1為正方體,下面結(jié)論錯誤的是
A.BD∥平面CB1D1B.AC1⊥BD
C.AC1⊥平面CB1D1D.異面直線ADCB所成的角為60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知正方體的棱長為,點在線段上,點在線段上,點在線段上,且,,,的中點,則四面體的體積(   )
A.與有關(guān),與無關(guān)B.與無關(guān),與無關(guān)
C.與無關(guān),與有關(guān)D.與有關(guān),與有關(guān)

查看答案和解析>>

同步練習(xí)冊答案