已知拋物線
與橢圓
交于A、B兩點,點F為拋物線
的焦點,若∠AFB=
,則橢圓的離心率為
A、
B、
C、
D、
點F坐標為(1,0)。由對稱性,不放設直線AF的傾斜角是
,則AF方程為:
。由
消去y得:
。解得:
(舍去)(因為-1<x<1)則點A坐標為
。代入橢圓方程得:
,解得
。
,故選A
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:填空題
已知橢圓
與雙曲線
有相同的焦點
、
,點
是
與
的一個公共點,
是一個以
為底的等腰三角形,
,
的離心率為
,則
的離心率為
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓兩個焦點
的坐標分別為
,
,并且經過點
.過左焦點
,斜率為
的直線與橢圓交于
,
兩點.設
,延長
,
分別與橢圓交于
兩點.
(I)求橢圓的標準方程; (II)若點
,求
點的坐標;
(III)設直線
的斜率為
,求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設
分別是橢圓:
(
)的左、右焦點,過
斜率為1的直線
與該橢圓相交于P,Q兩點,且
,
,
成等差數(shù)列.
(Ⅰ)求該橢圓的離心率;
(Ⅱ)設點M(0,-1)滿足|MP|=|MQ|,求該橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的中心在坐標原點,焦點在
軸上,離心率為
,橢圓的短軸端點和焦點所組成的四邊形周長等于8。
(Ⅰ)求橢圓
的方程;
(Ⅱ)若過點
的直線
與橢圓
相交于
兩點(
不是左右頂點),且以
為直徑的圓過橢圓
的右頂點,求直線
的方程。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知雙曲線
的左右焦點是F
1,F(xiàn)
2,設P是雙曲線右支上一點,
在
上的投影的大小恰好為|
|,且它們的夾角為
,則雙曲線的離心率e為
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
若橢圓
的共同焦點為
,
是兩曲線的一個交點,則
·
的值為______________.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
若橢圓
的一個焦點坐標為(0,1),則實數(shù)
的值等于_____
____,
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
的一個頂點P(7,12)在雙曲線
上,另外兩頂點F
1、F
2為該雙曲線的左、右焦點,則
的內心坐標為____
查看答案和解析>>