分析 求出拋物線的焦點坐標(biāo),即可得到雙曲線C的值,利用拋物線與雙曲線的交點以及△AF1F2是以AF1為底邊的等腰三角形,結(jié)合雙曲線a、b、c關(guān)系求出a的值,然后求出雙曲線的方程.
解答 解:拋物線的焦點坐標(biāo)(1,0),所以雙曲線中,c=1,
因為雙曲線C與該拋物線的一個交點為A,若△AF1F2是以AF1為底邊的等腰三角形,
由拋物線的定義可知,拋物線的準(zhǔn)線方程過雙曲線的左焦點,所以$\frac{^{2}}{a}$=2c,
c2=a2+b2=1,解得a=$\sqrt{2}$-1,
所以b2=2($\sqrt{2}$-1),
所以雙曲線C的方程為$\frac{{x}^{2}}{3-2\sqrt{2}}-\frac{{y}^{2}}{2\sqrt{2}-2}=1$.
故答案為:$\frac{{x}^{2}}{3-2\sqrt{2}}-\frac{{y}^{2}}{2\sqrt{2}-2}=1$.
點評 本題考查拋物線的簡單性質(zhì)以及雙曲線的簡單性質(zhì)的應(yīng)用,考查計算能力.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=3x+1 | B. | y=2-x-2x | C. | y=x2+1 | D. | y=x|x| |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{a+b}{2}$=M | B. | $\sqrt{ab}$=M | C. | a+b=M | D. | ab=M |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com