若cosαcosβ=
12
,則sinαsinβ的取值范圍是______.
分析:設(shè)x=sinαsinβ,利用兩角和與差的正弦函數(shù)公式分別化簡cos(α+β)與cos(α-β),將cosαcosβ的值代入,利用余弦函數(shù)的值域列出不等式,求出不等式的解集得到x的范圍,即為sinαsinβ的取值范圍.
解答:解:∵cosαcosβ=
1
2
,設(shè)sinαsinβ=x,
∴cos(α+β)=cosαcosβ-sinαsinβ=
1
2
-x,
cos(α-β)=cosαcosβ+sinαsinβ=
1
2
+x,
∴-1≤
1
2
-x≤1,-1≤
1
2
+x≤1,
解得:-
1
2
≤x≤
1
2
,
則sinαsinβ的取值范圍是[-
1
2
1
2
].
故答案為:[-
1
2
,
1
2
]
點評:此題考查了兩角和與差的余弦函數(shù)公式,以及余弦函數(shù)的定義域與值域,熟練掌握公式是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出以下四個命題:
①若cosαcosβ=1,則sin(α+β)=0;
②已知直線x=m與函數(shù)f(x)=sinx,g(x)=sin(
π
2
-x)
的圖象分別交于點M,N,則|MN|的最大值為
2

③若數(shù)列an=n2+λn(n∈N+)為單調(diào)遞增數(shù)列,則λ取值范圍是λ<-2;
④已知數(shù)列an的通項an=
3
2n-11
,其前n項和為Sn,則使Sn>0的n的最小值為12.
其中正確命題的序號為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出以下命題:
①存在實數(shù)x使sinx+cosx=
32

②若α、β是第一象限角,且α>β,則  cosα<cosβ;
③函數(shù)y=cos4x-sin4x的最小正周期是T=π;
④若cosαcosβ=1,則sin(α+β)=0;
其中正確命題的序號是
③④
③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)若
sinα+cosα
sinα-cosα
=3,tan(α-β)=2,求tan(β-2α)的值;
(2)已知sin(3π+θ)=
1
3
,求
cos(π+θ)
cosθ[cos(π-θ)-1]
+
cos(θ-2π)
sin(θ-
2
)cos(θ-π)-sin(
2
+θ)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題:
(1)存在實數(shù)x,使sinx+cosx=
3
2

(2)若α,β是第一象限角,且α>β,則cosα<cosβ;
(3)函數(shù)y=sin(
2
3
x+
2
)
是偶函數(shù);
(4)若cosαcosβ=1,則sin(α+β)=0.
其中,正確命題的序號是
(3)(4)
(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出四個命題:
(1)若cosα=cosβ,則α=β;
(2)函數(shù)y=2cos(2x+
π
3
)
的圖象關(guān)于直線x=-
π
6
對稱;
(3)函數(shù)y=sin|x|是周期函數(shù),且周期為2π;
(4)函數(shù)y=cosx(x∈R)為偶函數(shù).
其中所有正確命題的序號是
 

查看答案和解析>>

同步練習(xí)冊答案