【題目】如圖,在四棱錐中,底面,,,,為的中點.
(1)求證:平面;
(2)若點在線段上,且滿足,求直線與平面所成角的正弦值.
【答案】(1)詳見解析(2)
【解析】
(1) 連接,為正三角形,,即,又,由線面垂直的判定定理即可得到證明;(2)由(1)知,,兩兩垂直,因此以為坐標原點,以,,所在的直線分別為軸建立空間直角坐標系,求出平面的一個法向量,然后利用線面角的向量公式計算即可.
(1)如圖,連接.
由條件知四邊形為菱形,且,
∴,∴為正三角形.
∵為的中點,∴.
又∵,∴.
又∵底面,底面,∴.
∵,∴平面.
(2)由(1)知,,兩兩垂直,因此以為坐標原點,以,,所在的直線分別為軸建立空間直角坐標系,如圖所示.則,,,,.
∵,∴,
∴ .易知.
設為平面的一個法向量,則
由得取,得.
又∵,
∴ ,
故直線與平面所成角的正弦值為.
科目:高中數學 來源: 題型:
【題目】研究變量,得到一組樣本數據,進行回歸分析,有以下結論
①殘差平方和越小的模型,擬合的效果越好;
②用相關指數來刻畫回歸效果,越小說明擬合效果越好;
③在回歸直線方程中,當解釋變量每增加1個單位時,預報變量平均增加0.2個單位
④若變量和之間的相關系數為,則變量和之間的負相關很強,以上正確說法的個數是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,以坐標原點為極點,軸的非負半軸為極軸建立極坐標系,已知曲線的極坐標方程為,過點的直線的參數方程為(為參數),直線與曲線相交于兩點.
(1)寫出曲線的直角坐標方程和直線的普通方程;
(2)若,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市對創(chuàng)“市級示范性學!钡募住⒁覂伤鶎W校進行復查驗收,對辦學的社會滿意度一項評價隨機訪問了20為市民,這20位市民對這兩所學校的評分(評分越高表明市民的評價越好)的數據如下:
甲校:58,66,71,58,67,72,82,92,83,86,67,59,86,72,78,59,68,69,73,81;
乙校:90,80,73,65,67,69,81,85,82,88,89,86,86,78,98,95,96,91,76,69,.
檢查組將成績分成了四個等級:成績在區(qū)間的為等,在區(qū)間的為等,在區(qū)間的為等,在區(qū)間為等.
(1)請用莖葉圖表示上面的數據,并通過觀察莖葉圖,對兩所學校辦學的社會滿意度進行比較,寫出兩個統(tǒng)計結論;
(2)估計哪所學校的市民的評分等級為級或級的概率大,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知過原點的兩條互相垂直的直線與拋物線相交于不同于原點的兩點,且軸,的面積為16.
(1)求拋物線的標準方程;
(2)已知點,,為拋物線上不同的三點,若,試問:直線是否過定點?若過定點,求出定點坐標;若不過定點,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,直線的參數方程為(為參數),以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求直線的普通方程與曲線的直角坐標方程;
(2)若直線與曲線交于兩點,且設定點,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:的一個焦點為,點在上.
(1)求橢圓的方程;
(2)若直線:與橢圓相交于,兩點,問軸上是否存在點,使得是以為直角頂點的等腰直角三角形?若存在,求點的坐標;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com