設(shè)△ABC中的內(nèi)角A,B,C所對的邊長分別為a,b,c,且cosB=
4
5
,b=2.
(Ⅰ)當(dāng)a=
5
3
時(shí),求角A的度數(shù);
(Ⅱ)求△ABC面積的最大值.
分析:(I) 由cosB=
4
5
 可求sinB=
3
5
 且B為銳角,由b=2,a=
5
3
考慮利用正弦定理
b
sinB
=
a
sinA
可求sinA,結(jié)合三角形的大邊對大角且a<b可知A<B,從而可求A,
(II)由cosB=
4
5
,b=2利用余弦定理可得,b2=a2+c2-2accosB,把已知代入,結(jié)合a2+c2≥2ac可求ac的范圍,在代入三角形的面積公式S=
1
2
acsinB
 可求△ABC面積的最大值.
解答:解:∵cosB=
4
5
∴sinB=
3
5
 且B為銳角
(I)∵b=2,a=
5
3

由正弦定理可得,
b
sinB
=
a
sinA

sinA=
asinB
b
=
5
3
×
3
5
2
=
1
2

∵a<b∴A<B
∴A=30°
(II)由cosB=
4
5
,b=2
利用余弦定理可得,b2=a2+c2-2accosB
4+
8
5
ac=a
2
+c2≥2ac

從而有ac≤10
S△ABC=
1
2
acsinB=
3
10
ac≤3

∴△ABC面積的最大值為3
點(diǎn)評:本題(I)主要考查了利用正弦定理及三角形的大邊對大角解三角形(II)利用余弦定理及基本不等式、三角形的面積公式綜合求解三角形的面積.考查的是對知識(shí)綜合運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC中的內(nèi)角A,B,C所對的邊長分別為a,b,c,且,b=2.

(Ⅰ)當(dāng)時(shí),求角A的度數(shù);

(Ⅱ)求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年北京43中高三(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)△ABC中的內(nèi)角A,B,C所對的邊長分別為a,b,c,且,b=2.
(Ⅰ)當(dāng)時(shí),求角A的度數(shù);
(Ⅱ)求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年中國人民大學(xué)附中高考數(shù)學(xué)沖刺試卷06(理科)(解析版) 題型:解答題

設(shè)△ABC中的內(nèi)角A,B,C所對的邊長分別為a,b,c,且,b=2.
(Ⅰ)當(dāng)時(shí),求角A的度數(shù);
(Ⅱ)求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年北京市西城區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

設(shè)△ABC中的內(nèi)角A,B,C所對的邊長分別為a,b,c,且,b=2.
(Ⅰ)當(dāng)時(shí),求角A的度數(shù);
(Ⅱ)求△ABC面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案