函數(shù)f(x)是R上的奇函數(shù),當x>0時,f(x)=-x2+2x+a(a∈R).
(1)若函數(shù)f(x)在(0,+∞)上函數(shù)值均小于0,求實數(shù)a的取值范圍;
(2)是否存在實數(shù)a,使得函數(shù)f(x)在[-1,1]上單調(diào)遞增?若存在,求出a的取值范圍,若不存在,請說明理由.
考點:利用導數(shù)研究函數(shù)的單調(diào)性,函數(shù)奇偶性的性質(zhì)
專題:計算題,函數(shù)的性質(zhì)及應用
分析:(1)當x>0時,f(x)=-x2+2x+a=-(x-1)2+1+a;從而化恒成立問題為最值問題;
(2)假設存在實數(shù)a,使得函數(shù)f(x)在[-1,1]上單調(diào)遞增;則分析題意知只需使f(0)=-02+2×0+a≥0;從而解得.
解答: 解:(1)當x>0時,f(x)=-x2+2x+a=-(x-1)2+1+a;
∵函數(shù)f(x)在(0,+∞)上函數(shù)值均小于0,
∴1+a<0;
∴a<-1;
(2)假設存在實數(shù)a,使得函數(shù)f(x)在[-1,1]上單調(diào)遞增;
∵函數(shù)f(x)是R上的奇函數(shù),當x>0時,f(x)=-x2+2x+a(a∈R).
∴f(x)在[-1,0)(0,1]上單調(diào)遞增;
故只需使f(0)=-02+2×0+a≥0;
解得,a≥0.
故a的取值范圍為[0,+∞).
點評:本題考查了函數(shù)的性質(zhì)的應用及分段函數(shù)的單調(diào)性的判斷與應用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

一個圓分別與圓x2+y2-2x+4y+1=0和直線2x+y+4
5
=0相切,求直徑最小時圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知⊙C:(x-1)2+y2=1,求⊙C的極坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知兩圓C1:(x+4)2+y2=2,C2:(x-4)2+y2=2.動圓M與兩圓都相切,求動圓圓心M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知曲線C的極坐標方程是ρ=4cosθ.以極點為平面直角坐標系的原點,極軸為x軸的正半軸,建立平面直角坐標系,直線l的參數(shù)方程是:
x=m+
2
2
t
y=
2
2
t
(t是參數(shù)).
(Ⅰ) 若直線l與曲線C相交于A、B兩點,且|AB|=
14
,試求實數(shù)m值.
(Ⅱ) 設M(x,y)為曲線C上任意一點,求x+y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從極點O引定圓ρ=2cosθ的弦OP,延長OP到Q,使
OP
PQ
=
2
3
,求點Q的軌跡方程,并說明所求軌跡是什么圖形?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直角坐標平面上點Q(2,0)和圓C:x2+y2=1,動點M到圓C的切線長與|MQ|的比等于x(x>o),則動點M的軌跡為( 。
A、直線B、圓
C、直線或圓D、不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若變量想x,y滿足約束條件
x≤0
y≥0
y-x≤2
,則z=x+y的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

M(1,1)是方程2ax2+by2=1(a>0,b>0)表示的曲線上的點,則
2
a
+
9
b
最小值
 

查看答案和解析>>

同步練習冊答案