【題目】已知定義在R上的奇函數(shù)f(x),當(dāng)x∈(0,+∞)時的解析式為f(x)=﹣x2+4x﹣3.
(1)求這個函數(shù)在R上的解析式;
(2)作出f(x)的圖象,并根據(jù)圖象直接寫出函數(shù)f(x)的單調(diào)區(qū)間.
【答案】
(1)解:當(dāng)x<0時,﹣x>0,∵f(x)為R上的奇函數(shù),∴f(﹣x)=﹣f(x),
∴f(x)=﹣f(﹣x)=﹣[﹣(﹣x)2+4(﹣x)﹣3]=x2+4x+3,
即x<0時,f(x)=x2+4x+3.
當(dāng)x=0時,由f(﹣x)=﹣f(x)得:f(0)=0,
所以,f(x)=
(2)解:作出f(x)的圖象(如圖所示)
數(shù)形結(jié)合可得函數(shù)f(x)的減區(qū)間:
(﹣∞,﹣2)、(2,+∞);增區(qū)間為[﹣2,0)、(0,2].
【解析】(1)根據(jù)當(dāng)x∈(0,+∞)時的解析式,利用奇函數(shù)的性質(zhì),求得x≤0時函數(shù)的解析式,從而得到函數(shù)在R上的解析式.(2)根據(jù)函數(shù)的解析式、奇函數(shù)的性質(zhì),作出函數(shù)的圖象,數(shù)形結(jié)合可得函數(shù)f(x)的單調(diào)區(qū)間.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】銷售甲、乙兩種商品所得利潤分別是P(單位:萬元)和Q(單位:萬元),它們與投入資金t(單位:萬元)的關(guān)系有經(jīng)驗公式P= t,Q= .今將3萬元資金投入經(jīng)營甲、乙兩種商品,其中對甲種商品投資x(單位:萬元),
(1)試建立總利潤y(單位:萬元)關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)對甲種商品投資x(單位:萬元)為多少時?總利潤y(單位:萬元)值最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工程設(shè)備租賃公司為了調(diào)查A,B兩種挖掘機的出租情況,現(xiàn)隨機抽取了這兩種挖掘機各100臺,分別統(tǒng)計了每臺挖掘機在一個星期內(nèi)的出租天數(shù),統(tǒng)計數(shù)據(jù)如下表:
(I)根據(jù)這個星期的統(tǒng)計數(shù)據(jù),將頻率視為概率,求該公司一臺A型挖掘機,一臺B型挖掘機一周內(nèi)合計出租天數(shù)恰好為4天的概率;
(II)如果A,B兩種挖掘機每臺每天出租獲得的利潤相同,該公司需要從A,B兩種挖掘機中購買一臺,請你根據(jù)所學(xué)的統(tǒng)計知識,給出建議應(yīng)該購買哪一種類型,并說明你的理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)與有相同的極值點.
(I)求函數(shù)的解析式;
(II)證明:不等式(其中e為自然對數(shù)的底數(shù));
(III)不等式對任意恒成立,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列的各項均為正數(shù),且, .
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)設(shè),求數(shù)列的前n項和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知分別是橢圓的左、右焦點,離心率為,分別是橢圓的上、下頂點,.
(1)求橢圓的方程;
(2)過作直線與交于兩點,求三角形面積的最大值(是坐標(biāo)原點).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)已知函數(shù)f(x)=|lnx|,正數(shù)a,b滿足a<b,且f(a)=f(b),若f(x)在區(qū)間[a2 , b]上的最大值為2,則2a+b=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓方程為,雙曲線的兩條漸近線分別為, ,過橢圓的右焦點作直線,使,又與交于點,設(shè)直線與橢圓的兩個交點由上至下依次為, .
(1)若與所成的銳角為,且雙曲線的焦距為4,求橢圓的方程;
(2)求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過拋物線的焦點,斜率為的直線交拋物線于兩點.
(1)求線段的長度;
(2) 為坐標(biāo)原點, 為拋物線上一點,若,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com