20.求函數(shù)y=$\frac{1}{\root{3}{{x}^{2}-3}}$+$\sqrt{5-{x}^{2}}$的定義域.

分析 要使函數(shù)y=$\frac{1}{\root{3}{{x}^{2}-3}}$+$\sqrt{5-{x}^{2}}$有意義,只需x2-3≠0,且5-x2≥0,解不等式即可得到所求定義域.

解答 解:要使函數(shù)y=$\frac{1}{\root{3}{{x}^{2}-3}}$+$\sqrt{5-{x}^{2}}$有意義,
只需x2-3≠0,且5-x2≥0,
解得-$\sqrt{5}$≤x<-$\sqrt{3}$且-$\sqrt{3}$<x<$\sqrt{3}$且$\sqrt{3}$<x≤$\sqrt{5}$,
則定義域為[-$\sqrt{5}$,-$\sqrt{3}$)∪(-$\sqrt{3}$,$\sqrt{3}$)∪($\sqrt{3}$,$\sqrt{5}$].

點評 本題考查函數(shù)的定義域的求法,注意運用分式分母不為0,偶次根式被開方數(shù)非負,考查運算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

3.下列各組函數(shù)中不表示同一函數(shù)的是( 。
A.f(x)=lgx2,g(x)=2lg|x|B.f(x)=x,g(x)=$\root{3}{{x}^{3}}$
C.f(x)=$\sqrt{{x}^{2}-4}$,g(x)=$\sqrt{x+2}$$•\sqrt{x-2}$D.f(x)=|x+1|,g(x)=$\left\{\begin{array}{l}{x+1,x≥-1}\\{-x-1,x<-1}\end{array}\right.$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.設函數(shù)f(x)=x|x-a|,若對任意x1,x2∈[3,+∞)且x1≠x2有不等式(x1-x2)[f(x1)-f(x2)]>0恒成立,則實數(shù)a取值范圍為( 。
A.(-∞,-3]B.[-3,0)C.(-∞,3]D.(0,3]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.過兩點A(-2,1),B(m,3)的直線傾斜角是45°,則m等于( 。
A.0B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.在平面直角坐標系中,不等式組$\left\{\begin{array}{l}{x+2y≥0}\\{2x-y≥0(a>0)}\\{x≤a}\end{array}\right.$表示的平面區(qū)域的面積為5,則a=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.設△ABC的三邊為a,b,c滿足$\frac{b+c}{a}=cosB+cosC$.
(1)求A的值;
(2)求$2{cos^2}\frac{B}{2}+3{cos^2}\frac{C}{2}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.某四面體的三視圖如圖所示,該四面體的體積的是8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知等比數(shù)列{an}中,a1=2,an>0,函數(shù)f(x)=x(x-a1)(x-a2)…(x-a8),且f′(0)=236
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設數(shù)列{bn}的前n項和為Tn,b1=1,點(Tn+1,Tn)在直線-=上,若存在n∈N+,使不等式$\frac{2_{1}}{{a}_{1}}$+$\frac{2_{2}}{{a}_{2}}$+…+$\frac{2_{n}}{{a}_{n}}$≥m成立,求實數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.若α是第四象限角,則π+α是第二象限角.

查看答案和解析>>

同步練習冊答案