若數(shù)列滿足,則稱數(shù)列為“平方遞推數(shù)列”.已知數(shù)列中,,點(diǎn)在函數(shù)的圖象上,其中為正整數(shù).
(1)證明數(shù)列是“平方遞推數(shù)列”,且數(shù)列為等比數(shù)列;
(2)設(shè)(1)中“平方遞推數(shù)列”的前項(xiàng)積為,
,求;
(3)在(2)的條件下,記,求數(shù)列的前項(xiàng)和,并求使的最小值.
(1)見(jiàn)解析;(2) ;(3)

試題分析:(1)根據(jù),得到,即是“平方遞推數(shù)列”.
進(jìn)一步對(duì)兩邊取對(duì)數(shù)得 ,利用等比數(shù)列的定義證明.
(2)首先得到  , 應(yīng)用等比數(shù)列的求和公式即得.
(3)求通項(xiàng)、求和,根據(jù),得到,再根據(jù),即得解.
試題解析:(1)由題意得:,即
是“平方遞推數(shù)列”.                    2分
對(duì)兩邊取對(duì)數(shù)得 ,
所以數(shù)列是以為首項(xiàng),為公比的等比數(shù)列.   4分
(2)由(1)知              5分

                        8分
(3)                  9分
                      10分
,即           11分
,所以.                       12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列{an}為等差數(shù)列,若<-1,且它們的前n項(xiàng)和Sn有最大值,求使得Sn<0的n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)數(shù)列{an}滿足a1=2,a2+a4=8,且對(duì)任意n∈N*,函數(shù)f(x)=(an-an+1+an+2)x+an+1cos x-an+2sin x滿足f′=0.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=2(an+),求數(shù)列{bn}的前n項(xiàng)和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè){an}是公比為正數(shù)的等比數(shù)列,a1=2,a3=a2+4,
(1)求{an}的通項(xiàng)公式;
(2)設(shè){bn}是首項(xiàng)為1,公差為2的等差數(shù)列,求數(shù)列{an+bn}的前n項(xiàng)和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知等差數(shù)列{an}的公差d=1,前n項(xiàng)和為Sn.
(1)若1,a1,a3成等比數(shù)列,求a1
(2)若S5a1a9,求a1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若數(shù)列{an}滿足a1=2且anan-1=2n+2n-1Sn為數(shù)列{an}的前n項(xiàng)和,則log2(S2 012+2)=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)f(x)是定義在R上不恒為零的函數(shù),且對(duì)于任意實(shí)數(shù)a,b∈R,滿足:f(a·b)=af(b)+bf(a),f(2)=2,an=(n∈N*),bn=(n∈N*).
考察下列結(jié)論:
①f(0)=f(1);②f(x)為偶函數(shù);
③數(shù)列{an}為等比數(shù)列;
④數(shù)列{bn}為等差數(shù)列.
其中正確的結(jié)論共有(  )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)數(shù)列{an}滿足a1+2a2=3,且對(duì)任意的n∈N*,點(diǎn)列{Pn(n,an)}恒滿足PnPn+1=(1,2),則數(shù)列{an}的前n項(xiàng)和Sn為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知等差數(shù)列{an}中,a2+a4=10,a5=9,數(shù)列{bn}中,b1=a1,bn+1=bn+an.
(1)求數(shù)列{an}的通項(xiàng)公式,寫出它的前n項(xiàng)和Sn.
(2)求數(shù)列{bn}的通項(xiàng)公式.
(3)若cn=,求數(shù)列{cn}的前n項(xiàng)和Tn.

查看答案和解析>>

同步練習(xí)冊(cè)答案