已知數(shù)列{a
n}與{2a
n+3}均為等比數(shù)列,且a
1=1,則a
168=
1
1
.
分析:設(shè)數(shù)列{a
n}的公比為q,可得a
n=q
n-1,再由{2a
n+3}為等比數(shù)列可得其公比等于
=
,再由
2a
3+3=(2a
2+3)q,求出 q=1,從而得到a
168 的值.
解答:解:設(shè)數(shù)列{a
n}的公比為q,再由a
1=1,則得a
n=1×q
n-1=q
n-1.
再由{2a
n+3}為等比數(shù)列可得其公比等于
=
,
故有2a
3+3=(2a
2+3)q,即 2q
2+3=(2q+3)q,解得q=1,
即數(shù)列{a
n}是常數(shù)數(shù)列,故a
168=1,
故答案為1.
點(diǎn)評:本題主要考查等比數(shù)列的定義和性質(zhì),等比數(shù)列的通項(xiàng)公式,求出q=1是解題的關(guān)鍵,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
已知數(shù)列{a
n}與{b
n}的前n項(xiàng)和分別是S
n和T
n,已知S
100=41,T
100=49,記C
n=a
nT
n+b
nS
n-a
nb
n(n∈N
*),那么數(shù)列{C
n}的前100項(xiàng)和
100 | | i=1 |
Ci=
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知數(shù)列{a
n}與{b
n}滿足b
n+1a
n+b
na
n+1=(-2)
n+1,b
n=
,n∈N
*,且a
1=2.
(Ⅰ)求a
2,a
3的值
(Ⅱ)設(shè)c
n=a
2n+1-a
2n-1,n∈N
*,證明{c
n}是等比數(shù)列
(Ⅲ)設(shè)S
n為{a
n}的前n項(xiàng)和,證明
+
+…+
+
≤n-
(n∈N
*)
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知數(shù)列{a
n}與{b
n}滿足:
bnan+an+1+bn+1an+2=0,bn=,n∈N
*,且a
1=2,a
2=4.
(Ⅰ)求a
3,a
4,a
5的值;
(Ⅱ)設(shè)c
n=a
2n-1+a
2n+1,n∈N
*,證明:{c
n}是等比數(shù)列;
(Ⅲ)設(shè)S
k=a
2+a
4+…+a
2k,k∈N
*,證明:
4n |
|
k=1 |
<(n∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知數(shù)列{a
n}與{b
n}有如下關(guān)系:
a1=2,an+1=an,bn=則數(shù)列{b
n}的通項(xiàng)公式為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知數(shù)列{a
n}與{b
n}有如下關(guān)系:a
1=2,a
n+1=
(an+
),b
n=
.
(1)求數(shù)列{b
n}的通項(xiàng)公式.
(2)設(shè)S
n是數(shù)列{a
n}的前n項(xiàng)和,當(dāng)n≥2時(shí),求證:S
n<n+
.
查看答案和解析>>