【題目】函數(shù)、,下列命題中正確的是( )
A.不等式的解集為
B.函數(shù)在上單調(diào)遞增,在上單調(diào)遞減
C.若函數(shù)有兩個(gè)極值點(diǎn),則
D.若時(shí),總有恒成立,則
【答案】AD
【解析】
利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,極值點(diǎn),結(jié)合恒成立問題求參,對(duì)選項(xiàng)進(jìn)行逐一分析即可.
因?yàn)?/span>、,則,
令,可得,故在該區(qū)間上單調(diào)遞增;
令,可得,故在該區(qū)間上單調(diào)遞減.
又當(dāng)時(shí),,且,
故的圖象如下所示:
對(duì)A,數(shù)形結(jié)合可知,的解集為,故A正確;
對(duì)B,由上面分析可知,B錯(cuò)誤;
對(duì)C,若函數(shù)有兩個(gè)極值點(diǎn),
即有兩個(gè)極值點(diǎn),又,
要滿足題意,則需在有兩根,
也即在有兩根,也即直線與的圖象有兩個(gè)交點(diǎn).
數(shù)形結(jié)合則,解得.
故要滿足題意,則,故C是錯(cuò)誤的;
對(duì)D,若時(shí),總有恒成立,
即恒成立,
構(gòu)造函數(shù),則對(duì)任意的恒成立,
故在單調(diào)遞增,則在恒成立,
也即在區(qū)間恒成立,則,故D正確.
故選:AD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】部分與整體以某種相似的方式呈現(xiàn)稱為分形.謝爾賓斯基三角形是一種分形,由波蘭數(shù)學(xué)家謝爾賓斯基1915年提出.具體操作是取一個(gè)實(shí)心三角形,沿三角形的三邊中點(diǎn)連線,將它分成4個(gè)小三角形,去掉中間的那一個(gè)小三角形后,對(duì)其余3個(gè)小三角形重復(fù)上述過程逐次得到各個(gè)圖形,如上圖.現(xiàn)在圖(3)中隨機(jī)選取一個(gè)點(diǎn),則此點(diǎn)取自陰影部分的概率為________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】沙漏是我國古代的一種計(jì)時(shí)工具,是用兩個(gè)完全相同的圓錐頂對(duì)頂疊放在一起組成的(如圖).在一個(gè)圓錐中裝滿沙子,放在上方,沙子就從頂點(diǎn)處漏到另一個(gè)圓錐中,假定沙子漏下來的速度是恒定的.已知一個(gè)沙漏中沙子全部從一個(gè)圓錐中漏到另一個(gè)圓錐中需用時(shí)10分鐘.那么經(jīng)過5分鐘后,沙漏上方圓錐中的沙子的高度與下方圓錐中的沙子的高度之比是(假定沙堆的底面是水平的)( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】觀察下列事實(shí):|x|+|y|≤1的不同整數(shù)解(x,y)的個(gè)數(shù)為5,|x|+|y|≤2的不同整數(shù)解(x,y)的個(gè)數(shù)為13,|x|+|y|≤3的不同整數(shù)解(x,y)的個(gè)數(shù)為25,|x|+|y|≤4的不同整數(shù)解(x,y)的個(gè)數(shù)為41,|x|+|y|≤5的不同整數(shù)解(x,y)的個(gè)數(shù)為61,….則|x|+|y|≤20的不同整數(shù)解(x,y)的個(gè)數(shù)為( )
A.841B.761C.925D.941
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題:
①正切函數(shù)圖象的對(duì)稱中心是唯一的;
②若函數(shù)的圖像關(guān)于直線對(duì)稱,則這樣的函數(shù)是不唯一的;
③若,是第一象限角,且,則;
④若是定義在上的奇函數(shù),它的最小正周期是,則.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位組織“學(xué)習(xí)強(qiáng)國”知識(shí)競賽,選手從6道備選題中隨機(jī)抽取3道題.規(guī)定至少答對(duì)其中的2道題才能晉級(jí).甲選手只能答對(duì)其中的4道題。
(1)求甲選手能晉級(jí)的概率;
(2)若乙選手每題能答對(duì)的概率都是,且每題答對(duì)與否互不影響,用數(shù)學(xué)期望分析比較甲、乙兩選手的答題水平。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四棱錐中,菱形所在的平面,是中點(diǎn),是上的點(diǎn).
(1)求證:平面平面;
(2)若是的中點(diǎn),當(dāng)時(shí),是否存在點(diǎn),使直線與平面的所成角的正弦值為?若存在,請求出的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)在拋物線上,則當(dāng)點(diǎn)到點(diǎn)的距離與點(diǎn)到拋物線焦點(diǎn)距離之和取得最小值時(shí),點(diǎn)的坐標(biāo)為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知若橢圓:()交軸于,兩點(diǎn),點(diǎn)是橢圓上異于,的任意一點(diǎn),直線,分別交軸于點(diǎn),,則為定值.
(1)若將雙曲線與橢圓類比,試寫出類比得到的命題;
(2)判定(1)類比得到命題的真假,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com