對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),定義:設(shè)f″(x)是函數(shù)y=f(x)的導(dǎo)數(shù)y=f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)為函數(shù)y=f(x)的“拐點(diǎn)”.有同學(xué)發(fā)現(xiàn)“任何一個(gè)三次函數(shù)都有“拐點(diǎn)”;任何一個(gè)三次函數(shù)都有對稱中心;且“拐點(diǎn)”就是對稱中心.”請你根據(jù)這一發(fā)現(xiàn),請回答問題:
若函數(shù),
      
2010

試題分析:根據(jù)題意,由于,那么可知
故利用函數(shù)的對稱性可知,只要變量和為1,則函數(shù)值和為2,因此可知所求的的值為1005個(gè)2,即答案為2010.
點(diǎn)評:本小題主要考查函數(shù)與導(dǎo)數(shù)等知識(shí),考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查化簡計(jì)算能力,求函數(shù)的值以及函數(shù)的對稱性的應(yīng)用,屬于難題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè),當(dāng)時(shí),恒成立,則實(shí)數(shù)
取值范圍為            。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過點(diǎn)(0,1)且與曲線在點(diǎn)(3,2)處的切線垂直的直線的方程為(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)是定義在實(shí)數(shù)集R上的奇函數(shù),且當(dāng)時(shí),成立,若,則大小關(guān)系 ( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知f(x)=x3+ax2+(a+6)x+1有極大值和極小值,則a的取值范圍為(       )
A.-1<a<2B.-3<a<6 C.a(chǎn)<-1或a>2 D.a(chǎn)<-3或a>6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)是函數(shù)的導(dǎo)函數(shù),的圖象如圖1所示,則的圖象最有可能的是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知是實(shí)數(shù),函數(shù)
(Ⅰ)若,求的值及曲線在點(diǎn)處的切線方程;
(Ⅱ)求在區(qū)間上的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)則( 。
A.無法確定B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù),則處的導(dǎo)數(shù)( )
A.B.0C.1D.2

查看答案和解析>>

同步練習(xí)冊答案