1.在△ABC中,a=$\sqrt{3}$,b=1,∠A=$\frac{π}{3}$,則cosB=$\frac{\sqrt{3}}{2}$.

分析 由已知利用正弦定理可求sinB,利用大邊對(duì)大角可求B為銳角,利用同角三角函數(shù)基本關(guān)系式可求cosB的值.

解答 解:∵a=$\sqrt{3}$,b=1,∠A=$\frac{π}{3}$,
∴由正弦定理可得:sinB=$\frac{bsinA}{a}$=$\frac{1×\frac{\sqrt{3}}{2}}{\sqrt{3}}$=$\frac{1}{2}$,
∵b<a,B為銳角,
∴cosB=$\sqrt{1-si{n}^{2}B}$=$\frac{\sqrt{3}}{2}$.
故答案為:$\frac{\sqrt{3}}{2}$.

點(diǎn)評(píng) 本題主要考查了正弦定理,大邊對(duì)大角,同角三角函數(shù)基本關(guān)系式在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如圖所示矩形ABCD邊長AB=1,AD=4,拋物線頂點(diǎn)為邊AD的中點(diǎn)E,且B,C兩點(diǎn)在拋物線上,則從矩形內(nèi)任取一點(diǎn)落在拋物線與邊BC圍成的封閉區(qū)域(包含邊界上的點(diǎn))內(nèi)的概率是$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.?x∈R,使得x2-mx+1≤0成立,則實(shí)數(shù)m的取值范圍為m≥2或m≤-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且λSn=λ-an,其中λ≠0且λ≠-1.
(1)證明:{an}是等比數(shù)列,并求其通項(xiàng)公式;
(2)若${S_4}=\frac{15}{16}$,求λ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)i是虛數(shù)單位,則復(fù)數(shù)i3-$\frac{2}{i}$=(  )
A.iB.3iC.-iD.-3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.一種在實(shí)數(shù)域和復(fù)數(shù)域上近似求解方程的方法可以設(shè)計(jì)如圖所示的程序框圖,若輸入的n為6時(shí),輸出結(jié)果為2.45,則m可以是( 。
A.0.6B.0.1C.0.01D.0.05

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)變量x,y滿足線性約束條件$\left\{\begin{array}{l}{x+y≤1}\\{x-y≤1}\\{x≥0}\end{array}\right.$,則z=x+2y的最小值為( 。
A.-2B.-1C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知集合M={x|x2≤1},N={x|log2x<1},則M∩N=( 。
A.[-1,2)B.[-1,1]C.(0,1]D.(-∞,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)等差數(shù)列{an}的前n項(xiàng)和Sn滿足S5=15,且2a2,a6,a8+1成公比大于1的等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)${b_n}={2^n}•{a_n}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊答案