12.?x∈R,使得x2-mx+1≤0成立,則實數(shù)m的取值范圍為m≥2或m≤-2.

分析 若?x∈R,使得x2-mx+1≤0成立,則△=m2-4≥0,解得實數(shù)m的取值范圍.

解答 解:若?x∈R,使得x2-mx+1≤0成立,
則△=m2-4≥0,
解得:m≥2或m≤-2,
故答案為:m≥2或m≤-2

點評 本題以命題的真假判斷與應(yīng)用為載體,考查了特稱命題,二次函數(shù)的圖象和性質(zhì),難度基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.以原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線l的方程為$ρsin({θ-\frac{2π}{3}})=-\sqrt{3}$,⊙C的極坐標(biāo)方程為ρ=4cosθ+2sinθ.
(1)求直線l和⊙C的普通方程;
(2)若直線l與圓⊙C交于A,B兩點,求弦AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知f(x)是奇函數(shù),當(dāng)x>0時,f(x)=1gx,設(shè)a=f(3),b=$f(\frac{1}{4})$,c=f(-2),則( 。
A.a>c>bB.a>b>cC.c>a>bD.b>a>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知數(shù)列{an}的前n項和為Sn,且${S_n}={a_n}+{n^2}-1({n∈{N^*}})$.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)定義x=[x]+<x>,其中[x]為實數(shù)x的整數(shù)部分,<x>為x的小數(shù)部分,且0≤<x><1,記cn=<$\frac{{{a_n}{a_{n+1}}}}{S_n}$>,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知$f(x)=\left\{{\begin{array}{l}{f(x+1),}&{x<2}\\{{2^x},}&{x≥2}\end{array}}\right.$,則f(log23)=( 。
A.12B.6C.4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某高校要了解在校學(xué)生的身體健康狀況,隨機(jī)抽取了50名學(xué)生進(jìn)行心率測試,心率全部介于50次/分到75次/分之間,現(xiàn)將數(shù)據(jù)分成五組,第一組[50,55),第二組[55,60)…第五組[70,75],按上述分組方法得到的頻率分布直方圖如圖所示,已知圖中從左到右的前三組的頻率之比為a:4:10.
(1)求a的值.
(2)若從第一、第五組兩組數(shù)據(jù)中隨機(jī)抽取兩名學(xué)生的心率,求這兩個心率之差的絕對值大于5的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)數(shù)列{an}的前n項和為Sn,已知a2=2,an+2+(-1)n-1an=1,則S40=( 。
A.260B.250C.240D.230

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在△ABC中,a=$\sqrt{3}$,b=1,∠A=$\frac{π}{3}$,則cosB=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知3b=4c,B=2C.
(Ⅰ)求sinB的值;
(Ⅱ)若b=4,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案