【題目】已知是定義在上的偶函數(shù),且滿足,若當(dāng)時,,則函數(shù)在區(qū)間上零點(diǎn)的個數(shù)為( )
A. 2017 B. 2018 C. 4034 D. 4036
【答案】D
【解析】試題分析:函數(shù)g(x)=f(x)﹣e﹣|x|在區(qū)間[﹣2018,2018]上零點(diǎn)的個數(shù)函數(shù)的圖象與y=e﹣|x|的圖象交點(diǎn)個數(shù).是定義在上的偶函數(shù),由得f(x)是周期為2的偶函數(shù),根據(jù)當(dāng)x∈[0,1]時,,作出y=f(x)與圖象,結(jié)合圖象即可.
詳解:函數(shù)g(x)=f(x)﹣e﹣|x|在區(qū)間[﹣2018,2018]上零點(diǎn)的個數(shù)函數(shù)的圖象與y=e﹣|x|的圖象交點(diǎn)個數(shù).
由是定義在上的偶函數(shù),且滿足,即f(﹣x)=f(x).
又∵,f(x)是周期為2的偶函數(shù).
∵當(dāng)x∈[0,1]時,,
作出y=f(x)與圖象如下圖,
可知每個周期內(nèi)有兩個交點(diǎn),所以函數(shù)g(x)=f(x)﹣e﹣|x|在區(qū)間[﹣2018,2018]上零點(diǎn)的個數(shù)為2018×2=4036.
故選:D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程與的直角坐標(biāo)方程;
(2)判斷曲線是否相交,若相交,求出相交弦長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,傾斜角為的直線的參數(shù)方程為.以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.
(1)寫出直線的普通方程和曲線的直角坐標(biāo)方程;
(2)已知點(diǎn).若點(diǎn)的極坐標(biāo)為,直線經(jīng)過點(diǎn)且與曲線相交于,兩點(diǎn),求,兩點(diǎn)間的距離的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A={x|x2-3x+2=0},B={x|x2+(a-1)x+a2-5=0}.
(1)若A∩B={2},求實(shí)數(shù)a的值;
(2)若A∪B=A,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為考查某種疫苗預(yù)防疾病的效果,進(jìn)行動物實(shí)驗(yàn),得到統(tǒng)計數(shù)據(jù)如下:
未發(fā)病 | 發(fā)病 | 總計 | |
未注射疫苗 | 20 | ||
注射疫苗 | 30 | ||
總計 | 50 | 50 | 100 |
現(xiàn)從所有試驗(yàn)動物中任取一只,取到“注射疫苗”動物的概率為.
(1)求列聯(lián)表中的數(shù)據(jù),,,的值;
(2)判斷疫苗是否有效?
(3)能夠有多大把握認(rèn)為疫苗有效?
(參考公式,)
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)滿足條件f(0)=1,及f(x+1)﹣f(x)=2x.
(1)求函數(shù)f(x)的解析式;
(2)在區(qū)間[﹣1,1]上,y=f(x)的圖象恒在y=2x+m的圖象上方,試確定實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)設(shè),若對任意給定的,關(guān)于的方程在上有兩個不同的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍(其中為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)P是平行四邊形ABCD所在平面外一點(diǎn),M、N分別是AB、PC的中點(diǎn).
(1)求證:MN∥平面PAD;
(2)在PB上確定一個點(diǎn)Q,使平面MNQ∥平面PAD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com