【題目】已知函數(shù)f(x)= 恰有兩個零點,則a的取值范圍是 .
【答案】(﹣3,0)
【解析】解:由題意,a≥0時,
x<0,y=2x3﹣ax2﹣1,y′=6x2﹣2ax>0恒成立,
f(x)在(0,+∞)上至多一個零點;
x≥0,函數(shù)y=|x﹣3|+a無零點,
∴a≥0,不符合題意;
﹣3<a<0時,函數(shù)y=|x﹣3|+a在[0,+∞)上有兩個零點,
函數(shù)y=2x3﹣ax2﹣1在(﹣∞,0)上無零點,符合題意;
a=﹣3時,函數(shù)y=|x﹣3|+a在[0,+∞)上有兩個零點,
函數(shù)y=2x3﹣ax2﹣1在(﹣∞,0)上有零點﹣1,不符合題意;
a<﹣3時,函數(shù)y=|x﹣3|+a在[0,+∞)上有兩個零點,
函數(shù)y=2x3﹣ax2﹣1在(﹣∞,0)上有兩個零點,不符合題意;
綜上所述,a的取值范圍是(﹣3,0).
所以答案是(﹣3,0).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的三個頂點,其外接圓為圓.
(1)若直線過點,且被圓截得的弦長為,求直線的方程;
(2)對于線段(包括端點)上的任意一點,若在以為圓心的圓上都存在不同的兩點,使得點是線段的中點,求圓的半徑的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某市高三教學(xué)質(zhì)量檢測中,全市共有名學(xué)生參加了本次考試,其中示范性高中參加考試學(xué)生人數(shù)為人,非示范性高中參加考試學(xué)生人數(shù)為人.現(xiàn)從所有參加考試的學(xué)生中隨機(jī)抽取人,作檢測成績數(shù)據(jù)分析.
(1)設(shè)計合理的抽樣方案(說明抽樣方法和樣本構(gòu)成即可);
(2)依據(jù)人的數(shù)學(xué)成績繪制了如圖所示的頻率分布直方圖,據(jù)此估計本次檢測全市學(xué)生數(shù)學(xué)成績的平均分;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線C:x2=4y的焦點為F,斜率為k的直線l經(jīng)過點F,若拋物線C上存在四個點到直線l的距離為2,則k的取值范圍是( )
A.(﹣∞,﹣ )∪( ,+∞)
B.(﹣ ,﹣1)∪(1, )
C.(﹣ , )
D.(﹣∞,﹣1)∪(1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列{an}中,a1=1,且anan+1+ (an﹣an+1)+1=0,則a2016=( )
A.1
B.﹣1
C.2+
D.2﹣
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,PA⊥平面ABCD,四邊形ABCD為梯形,AD∥BC,BC=6,PA=AD=CD=2,E為BC上一點且BE= BC,PB⊥AE.
(1)求證:AB⊥PE;
(2)求二面角B﹣PC﹣D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)過點M(m,2),其焦點為F,且|MF|=2.
(Ⅰ)求拋物線C的方程;
(Ⅱ)設(shè)E為y軸上異于原點的任意一點,過點E作不經(jīng)過原點的兩條直線分別與拋物線C和圓F:(x﹣1)2+y2=1相切,切點分別為A,B,求證:直線AB過定點F(1,0).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com