7.一個(gè)四棱錐的底面為正方形,其三視圖如圖所示,其中主視圖和左視圖均為等腰三角形,俯視圖是一個(gè)正方形,則這個(gè)四棱錐的體積是( 。
A.1B.2C.3D.4

分析 根據(jù)三視圖計(jì)算三棱錐的底面積和高,代入體積公式計(jì)算.

解答 解:由三視圖可知四棱錐底面正方形對(duì)角線為2,∴棱錐底面積S=$\frac{1}{2}×{2}^{2}$=2,
由左視圖可知棱錐的高h(yuǎn)=$\sqrt{10-1}=3$.
∴四棱錐的體積V=$\frac{1}{3}Sh$=$\frac{1}{3}×2×3$=2.
故選:B.

點(diǎn)評(píng) 本題考查了棱錐的三視圖和結(jié)構(gòu)特征,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,0<φ<π)的最小值為-2,其圖象相鄰的最高點(diǎn)和最低點(diǎn)的橫坐標(biāo)差是3π,又圖象過點(diǎn)(0,1),求:
(1)函數(shù)f(x)的解析式;
(2)函數(shù)f(x)在區(qū)間$[-\frac{3π}{2},0]$上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知向量$\overrightarrow a=({sinωx,cosωx}),\overrightarrow b=({2sinωx,2\sqrt{3}cosωx})$,函數(shù)$f(x)=\overrightarrow a•\overrightarrow b+λ,({x∈R})$的圖象關(guān)于直線$x=\frac{π}{3}$對(duì)稱,且經(jīng)過點(diǎn)$({\frac{π}{4},\sqrt{3}})$,其中ω,λ為實(shí)數(shù),ω∈(0,2).
(1)求f(x)的解析式;
(2)若銳角α,β滿足$f({\frac{α}{2}+\frac{π}{3}})=\frac{2}{7},f({\frac{α+β}{2}+\frac{π}{12}})=\frac{{5\sqrt{3}}}{7}$,求β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.如果不等式ax2+bx+c>0的解集為{x|-2<x<4},那么對(duì)于函數(shù)f(x)=ax2+bx+c應(yīng)有( 。
A.f(5)<f(2)<f(-1)B.f(-1)<f(5)<f(2)C.f(2)<f(-1)<f(5)D.f(5)<f(-1)<f(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.函數(shù)f(x)=x3-3x+1的單調(diào)減區(qū)間為(-1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=2cos(x+$\frac{5π}{12}$)sin(x+$\frac{π}{4}$)+$\frac{1}{2}$,x∈R.
(1)求f(x)的單調(diào)增區(qū)間;
(2)已知△ABC內(nèi)角A、B、C的對(duì)邊分別為a、b、c,且c=3,f(C)=-$\frac{\sqrt{3}}{2}$,若向量$\overrightarrow{m}$=(1,sinA)與$\overrightarrow{n}$=(2,sinB)共線,求a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知θ∈(0,$\frac{π}{2}$),求g(θ)=($\frac{1}{2}$+cosθ)($\frac{\sqrt{3}}{2}$+sinθ)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知tanθ=2,且θ∈($\frac{π}{2}$,$\frac{3π}{2}$),則sin$\frac{θ}{2}$=$\frac{\sqrt{50+10\sqrt{5}}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知α∈(π,2π),cosα=$\frac{3\sqrt{10}}{10}$,則tanα等于(  )
A.2B.-$\frac{1}{3}$C.-$\frac{1}{2}$D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案