17.已知α∈(π,2π),cosα=$\frac{3\sqrt{10}}{10}$,則tanα等于( 。
A.2B.-$\frac{1}{3}$C.-$\frac{1}{2}$D.3

分析 由題意利用同角三角函數(shù)的基本關(guān)系,求得sinα 的值,可得tanα的值.

解答 解:∵α∈(π,2π),cosα=$\frac{3\sqrt{10}}{10}$,∴α∈($\frac{3π}{2}$,2π),sinα=-$\sqrt{{1-cos}^{2}α}$=-$\frac{\sqrt{10}}{10}$,
則tanα=$\frac{sinα}{cosα}$=-$\frac{1}{3}$,
故選:B.

點(diǎn)評 本題主要考查同角三角函數(shù)的基本關(guān)系的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.一個四棱錐的底面為正方形,其三視圖如圖所示,其中主視圖和左視圖均為等腰三角形,俯視圖是一個正方形,則這個四棱錐的體積是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知在邊長為1的正方形ABCD中,E、F分別在線段AB,BC上運(yùn)動,若EF=1,則$\overrightarrow{EC}$$•\overrightarrow{FD}$的取值范圍是( 。
A.[1-$\sqrt{2}$,0]B.[0,$\sqrt{2}$+1]C.[$\sqrt{2}$-1,$\sqrt{2}$+1]D.[1,$\sqrt{2}$+1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下面有四個結(jié)論:
①第一項起乘相同常數(shù)得后一項,這樣所得到的數(shù)列一定為等比數(shù)列;
②常數(shù)列b,b,b,…,b一定為等比數(shù)列;
③等比數(shù)列{an}中,若公比q=1,則此數(shù)列各項相等;
④在等比數(shù)列中,各項與公比都不為零.
正確說法的個數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.α是第四象限角,cosα=$\frac{12}{13}$,則sin(20kπ-α)=( 。
A.$\frac{5}{13}$B.-$\frac{5}{13}$C.$\frac{5}{12}$D.-$\frac{5}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)y=$\sqrt{sinx}$+$\sqrt{tanx}$的定義域為{x|2kπ≤x<2kπ+$\frac{π}{2}$或x=(2k+1)π,k∈Z}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左右焦點(diǎn)分別為F1、F2,過F1且垂直于x軸的直線與雙曲線左支交于A、B兩點(diǎn),若△ABF2為正三角形,則雙曲線的離心率為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=$\sqrt{3}$sinωx+cosωx(ω>0)的最小正周期為π,把函數(shù)f(x)的圖象沿x軸向左平移$\frac{π}{6}$個長度單位,得到函數(shù)g(x)的解析式為(  )
A.g(x)=2sin(2x+$\frac{2π}{3}$)B.g(x)=2sin(2x-$\frac{π}{6}$)C.g(x)=2sin2xD.g(x)=2cos2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)f(x)為奇函數(shù),且在(-∞,0)上遞減,f(-2)=0,則xf(x)<0的解集為(-∞,-2)∪(2,+∞).

查看答案和解析>>

同步練習(xí)冊答案