頂點(diǎn)在原點(diǎn),對(duì)稱軸為y軸,頂點(diǎn)到準(zhǔn)線的距離為4的拋物線方程是   
【答案】分析:根據(jù)頂點(diǎn)在原點(diǎn),對(duì)稱軸為y軸,可設(shè)拋物線方程為:x2=±2py,利用頂點(diǎn)到準(zhǔn)線的距離為4,即可求得拋物線方程.
解答:解:根據(jù)頂點(diǎn)在原點(diǎn),對(duì)稱軸為y軸,可設(shè)拋物線方程為:x2=±2py
∵頂點(diǎn)到準(zhǔn)線的距離為4

∴2p=16
∴所求拋物線方程為x2=±16y
故答案為:x2=±16y
點(diǎn)評(píng):本題考查拋物線的標(biāo)準(zhǔn)方程,解題的關(guān)鍵是定型與定量,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線的頂點(diǎn)在原點(diǎn),對(duì)稱軸為y軸,且準(zhǔn)線方程為y=-
1
2
.
直線l過(guò)M(1,0)與拋物線交于A,B兩點(diǎn),點(diǎn)P在y軸的右側(cè)且滿足
OP
=
1
2
OA
+
1
2
OB
(O為坐標(biāo)原點(diǎn)).
(Ⅰ)求拋物線的方程及動(dòng)點(diǎn)P的軌跡方程;
(Ⅱ)記動(dòng)點(diǎn)P的軌跡為C,若曲線C的切線斜率為λ,滿足
MB
MA
,點(diǎn)A到y(tǒng)軸的距離為a,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求適合下列條件的拋物線的標(biāo)準(zhǔn)方程:
(1)頂點(diǎn)在原點(diǎn),對(duì)稱軸為坐標(biāo)軸,頂點(diǎn)到準(zhǔn)線的距離為4;
(2)頂點(diǎn)是雙曲線16x2-9y2=144的中心,準(zhǔn)線過(guò)雙曲線的左頂點(diǎn),且垂直于坐標(biāo)軸.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

根據(jù)所給條件求下列曲線的方程:
(1)頂點(diǎn)在原點(diǎn),對(duì)稱軸為x軸,并經(jīng)過(guò)點(diǎn)P(-6,-3)的拋物線方程.
(2)已知:點(diǎn)B與點(diǎn)A(-1,1)關(guān)于原點(diǎn)O對(duì)稱,P是動(dòng)點(diǎn),且直線AP與BP的斜率之積等于-
13
.求動(dòng)點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知中心在原點(diǎn)0、焦點(diǎn)在x軸上的橢圓T過(guò)點(diǎn)M(2,1),離心率為
3
2
;拋物線C頂點(diǎn)在原點(diǎn),對(duì)稱軸為x軸且過(guò)點(diǎn)M.
(Ⅰ)當(dāng)直線l0經(jīng)過(guò)橢圓T的左焦點(diǎn)且平行于OM時(shí),求直線l0的方程;(Ⅱ)若斜率為-
1
4
的直線l不過(guò)點(diǎn)M,與拋物線C交于A、B兩個(gè)不同的點(diǎn),求證:直線MA,MB與X軸總圍成等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知頂點(diǎn)在原點(diǎn)、對(duì)稱軸為坐標(biāo)軸且開口向右的拋物線過(guò)點(diǎn)M(4,-4).
(1)求拋物線的方程;
(2)過(guò)拋物線焦點(diǎn)F的直線l與拋物線交于不同的兩點(diǎn)A、B,若|AB|=8,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案