【題目】已知函數(shù),,設(shè)的定義域為.
(1)求;
(2)用定義證明在上的單調(diào)性,并直接寫出在上的單調(diào)性;
(3)若對一切恒成立,求實數(shù)的取值范圍.
【答案】(1);
(2)證明見解析;單調(diào)遞減;
(3).
【解析】
(1)根據(jù)指數(shù)函數(shù)的性質(zhì)求出函數(shù)的定義域;
(2)根據(jù)定義證明單調(diào)性的步驟證明即可,結(jié)合復(fù)合函數(shù)的單調(diào)性得到在上的單調(diào)性;
(3)若對一切恒成立,轉(zhuǎn)化為,結(jié)合三角函數(shù)的最值,可求出a的范圍.
解:(1)
要使函數(shù)有意義,則,
即,
∴,
故函數(shù)的定義域為:
(2)f(x)在上單調(diào)遞減,
證明如下:設(shè)<<3,
則f(x1)﹣f(x2)=,
又<<3,
∴,,,
∴f(x1)﹣f(x2)>0,即f(x1)>f(x2)
∴f(x)在(﹣∞,3)上單調(diào)遞減,
∴在(﹣∞,3)上單調(diào)遞減.
(3)∵對一切恒成立,
∴
由 ,可得,又,
∴,即;
由,可得
又,
∴,
解得:,或
又
故a的取值范圍為 .
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某周末,鄭州方特夢幻王國匯聚了八方來客. 面對該園區(qū)內(nèi)相鄰的兩個主題公園“千古蝶戀”和“西游傳說”,成年人和未成年人選擇游玩的意向會有所不同. 某統(tǒng)計機構(gòu)對園區(qū)內(nèi)的100位游客(這些游客只在兩個主題公園中二選一)進行了問卷調(diào)查. 調(diào)查結(jié)果顯示,在被調(diào)查的50位成年人中,只有10人選擇“西游傳說”,而選擇“西游傳說”的未成年人有20人.
(1)根據(jù)題意,請將下面的列聯(lián)表填寫完整;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),判斷是否有99%的把握認為選擇哪個主題公園與年齡有關(guān).
附參考公式與表:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的一個頂點為,且焦距為,直線交橢圓于、兩點(點、與點不重合),且滿足.
(1)求橢圓的標準方程;
(2)為坐標原點,若點滿足,求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著智能手機的普及,各類手機娛樂軟件也如雨后春筍般涌現(xiàn). 如表中統(tǒng)計的是某手機娛樂軟件自2018年8月初推出后至2019年4月底的月新注冊用戶數(shù),記月份代碼為(如對應(yīng)于2018年8月份,對應(yīng)于2018年9月份,…,對應(yīng)于2019年4月份),月新注冊用戶數(shù)為(單位:百萬人)
(1)請依據(jù)上表的統(tǒng)計數(shù)據(jù),判斷月新注冊用戶與月份線性相關(guān)性的強弱;
(2)求出月新注冊用戶關(guān)于月份的線性回歸方程,并預(yù)測2019年5月份的新注冊用戶總數(shù).
參考數(shù)據(jù):,,.
回歸直線的斜率和截距公式:,.
相關(guān)系數(shù)(當時,認為兩相關(guān)變量相關(guān)性很強. )
注意:兩問的計算結(jié)果均保留兩位小數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知圓錐底面半徑,為底面圓圓心,點Q為半圓弧的中點,點為母線的中點,與所成的角為,求:
(1)圓錐的側(cè)面積;
(2)兩點在圓錐面上的最短距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=||,實數(shù)m,n滿足0<m<n,且f(m)=f(n),若f(x)在[m2,n]上的最大值為2,則=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的方程為,其中.
(1)求證:直線恒過定點;
(2)當變化時,求點到直線的距離的最大值;
(3)若直線分別與軸、軸的負半軸交于兩點,求面積的最小值及此時直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com