【題目】如圖,已知圓錐底面半徑,為底面圓圓心,點(diǎn)Q為半圓弧的中點(diǎn),點(diǎn)為母線的中點(diǎn),與所成的角為,求:
(1)圓錐的側(cè)面積;
(2)兩點(diǎn)在圓錐面上的最短距離.
【答案】(1);(2).
【解析】
(1)取中點(diǎn),連接,根據(jù)可得;根據(jù)垂直關(guān)系,結(jié)合勾股定理和直角三角形中的長度關(guān)系可求得圓錐母線長;根據(jù)扇形面積公式可求得圓錐的側(cè)面積;(2)在圓錐側(cè)面上連接兩點(diǎn)可知最短距離為直線,將圓錐沿母線展開,根據(jù)(1)的結(jié)果可知圓心角為,根據(jù)角度和長度關(guān)系可證得為等邊三角形,從而求得結(jié)果.
(1)取中點(diǎn),連接
則 即為異面直線與所成角
又平面 平面
平面
在中,
又
圓錐母線長,即側(cè)面展開扇形半徑
底面圓周長 圓錐的側(cè)面積
即圓錐的側(cè)面積為:
(2)在圓錐側(cè)面上連接兩點(diǎn)的所有曲線中,最短的必為直線
由(1)知,側(cè)面展開圖扇形的圓心角為
沿母線將圓錐側(cè)面展開,如下圖所示:
則
是半圓弧的中點(diǎn)
又 為等邊三角形
即兩點(diǎn)在圓錐面上的最短距離為:
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)的單調(diào)增區(qū)間;最大值,以及取得最大值時x的取值集合;
(2)已知中,角A、B、C的對邊分別為a,b,c,若,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年為我國改革開放40周年,某事業(yè)單位共有職工600人,其年齡與人數(shù)分布表如下:
年齡段 | ||||
人數(shù)(單位:人) | 180 | 180 | 160 | 80 |
約定:此單位45歲59歲為中年人,其余為青年人,現(xiàn)按照分層抽樣抽取30人作為全市慶祝晚會的觀眾.
(1)抽出的青年觀眾與中年觀眾分別為多少人?
(2)若所抽取出的青年觀眾與中年觀眾中分別有12人和5人不熱衷關(guān)心民生大事,其余人熱衷關(guān)心民生大事.完成下列2×2列聯(lián)表,并回答能否有90%的把握認(rèn)為年齡層與熱衷關(guān)心民生大事有關(guān)?
熱衷關(guān)心民生大事 | 不熱衷關(guān)心民生大事 | 總計 | |
青年 | 12 | ||
中年 | 5 | ||
總計 | 30 |
(3)若從熱衷關(guān)心民生大事的青年觀眾(其中1人擅長歌舞,3人擅長樂器)中,隨機(jī)抽取2人上臺表演節(jié)目,則抽出的2 人能勝任的2人能勝任才藝表演的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,設(shè)的定義域為.
(1)求;
(2)用定義證明在上的單調(diào)性,并直接寫出在上的單調(diào)性;
(3)若對一切恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某汽車廠上年度生產(chǎn)汽車的投入成本為10萬元/輛,出廠價為12萬元/輛,年銷售量為10000輛.本年度為適應(yīng)市場需求,計劃提高產(chǎn)品質(zhì)量,適度增加投入成本.若每輛車投入成本增加的比例為(),則出廠價相應(yīng)地提高比例為,同時預(yù)計年銷售量增加的比例為,已知年利潤=(出廠價-投入成本)×年銷售量.
(1)寫出本年度預(yù)計的年利潤與投入成本增加的比例的關(guān)系式;
(2)為使本年度的年利潤比上年度有所增加,則投入成本增加的比應(yīng)在什么范圍內(nèi)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,為線段的垂直平分線,與交與點(diǎn)為上異于的任意一點(diǎn).
求的值;
判斷的值是否為一個常數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】火電廠、核電站的循環(huán)水自然通風(fēng)冷卻塔是一種大型薄殼型構(gòu)筑物。建在水源不十分充足的地區(qū)的電廠,為了節(jié)約用水,需建造一個循環(huán)冷卻水系統(tǒng),以使得冷卻器中排出的熱水在其中冷卻后可重復(fù)使用,大型電廠采用的冷卻構(gòu)筑物多為雙曲線型冷卻塔.此類冷卻塔多用于內(nèi)陸缺水電站,其高度一般為75~150米,底邊直徑65~120米. 雙曲線型冷卻塔比水池式冷卻構(gòu)筑物占地面積小,布置緊湊,水量損失小,且冷卻效果不受風(fēng)力影響;它比機(jī)力通風(fēng)冷卻塔維護(hù)簡便,節(jié)約電能;但體形高大,施工復(fù)雜,造價較高.(以上知識來自百度,下面題設(shè)條件只是為了適合高中知識水平,其中不符合實際處請忽略.)
(1)如圖為一座高100米的雙曲線冷卻塔外殼的簡化三視圖(忽略壁厚),其底面直徑大于上底直徑,已知其外殼主視圖與左視圖中的曲線均為雙曲線,高度為100,俯視圖為三個同心圓,其半徑分別40,,30,試根據(jù)上述尺寸計算視圖中該雙曲線的標(biāo)準(zhǔn)方程(為長度單位米);
(2)試?yán)谜n本中推導(dǎo)球體積的方法,利用圓柱和一個倒放的圓錐,計算封閉曲線:,,繞軸旋轉(zhuǎn)形成的旋轉(zhuǎn)體的體積多少?(用表示).(用積分計算不得分)現(xiàn)已知雙曲線冷卻塔是一個薄殼結(jié)構(gòu),為計算方便設(shè)其內(nèi)壁所在曲線也為雙曲線,其壁最厚為0.4(底部),最薄處厚度為0.3(喉部,即左右頂點(diǎn)處),試計算該冷卻塔內(nèi)殼所在的雙曲線標(biāo)準(zhǔn)方程是?并計算本題中的雙曲線冷卻塔的建筑體積(內(nèi)外殼之間)大約是多少;(計算時取3.14159,保留到個位即可)
(3)冷卻塔體型巨大,造價相應(yīng)高昂,本題只考慮地面以上部分的施工費(fèi)用(建筑人工和輔助機(jī)械)的計算,鋼筋土石等建筑材料費(fèi)用和和其它設(shè)備等施工費(fèi)用不在本題計算范圍內(nèi).超高建筑的施工(含人工輔助機(jī)械等)費(fèi)用隨著高度的增加而增加,現(xiàn)已知:距離地面高度30米(含30米)內(nèi)的建筑,每立方米的施工費(fèi)用平均為:400元/立方米;30米到40米(含40米)每立方米的施工費(fèi)用為800元/立方米;40米以上,平均高度每增加1米,每立方米的施工費(fèi)用增加100元.試計算建造本題中冷卻塔的施工費(fèi)用(精確到萬元).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面是直角梯形, , ,
,點(diǎn)在線段上,且, , 平面.
(1)求證:平面平面;
(2)當(dāng)四棱錐的體積最大時,求四棱錐的表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,分別過橢圓左、右焦點(diǎn)的動直線相交于點(diǎn),與橢圓分別交于與不同四點(diǎn),直線的斜率滿足.已知當(dāng)與軸重合時,,.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在定點(diǎn),使得為定值?若存在,求出點(diǎn)坐標(biāo)并求出此定值;若不存在,說明理由.
【答案】(Ⅰ);(Ⅱ),和.
【解析】試題分析:(1)當(dāng)與軸重合時,垂直于軸,得,得,從而得橢圓的方程;(2)由題目分析如果存兩定點(diǎn),則點(diǎn)的軌跡是橢圓或者雙曲線 ,所以把坐標(biāo)化,可得點(diǎn)的軌跡是橢圓,從而求得定點(diǎn)和點(diǎn).
試題解析:當(dāng)與軸重合時,, 即,所以垂直于軸,得,,, 得,橢圓的方程為.
焦點(diǎn)坐標(biāo)分別為, 當(dāng)直線或斜率不存在時,點(diǎn)坐標(biāo)為或;
當(dāng)直線斜率存在時,設(shè)斜率分別為, 設(shè)由, 得:
, 所以:,, 則:
. 同理:, 因為
, 所以, 即, 由題意知, 所以
, 設(shè),則,即,由當(dāng)直線或斜率不存在時,點(diǎn)坐標(biāo)為或也滿足此方程,所以點(diǎn)在橢圓上.存在點(diǎn)和點(diǎn),使得為定值,定值為.
考點(diǎn):圓錐曲線的定義,性質(zhì),方程.
【方法點(diǎn)晴】本題是對圓錐曲線的綜合應(yīng)用進(jìn)行考查,第一問通過兩個特殊位置,得到基本量,,得,,從而得橢圓的方程,第二問由題目分析如果存兩定點(diǎn),則點(diǎn)的軌跡是橢圓或者雙曲線 ,本題的關(guān)鍵是從這個角度出發(fā),把坐標(biāo)化,求得點(diǎn)的軌跡方程是橢圓,從而求得存在兩定點(diǎn)和點(diǎn).
【題型】解答題
【結(jié)束】
21
【題目】已知,,.
(Ⅰ)若,求的極值;
(Ⅱ)若函數(shù)的兩個零點(diǎn)為,記,證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com