已知首項為的等比數(shù)列不是遞減數(shù)列,其前n項和為,且成等差數(shù)列。
(1)求數(shù)列的通項公式;
(2)設,求數(shù)列的最大項的值與最小項的值。

(1)(2),

解析試題分析:
(1)根據(jù)成等差數(shù)列,利用等比數(shù)列通項公式和前項和公式,展開.利用等比數(shù)列不是遞減數(shù)列,可得值,進而求通項.
(2)首先根據(jù)(1)得到,進而得到,但是等比數(shù)列的公比是負數(shù),所以分兩種情況:當?shù)漠攏為奇數(shù)時,隨n的增大而減小,所以;當n為偶數(shù)時,隨n的增大而增大,所以,然后可判斷最值.
試題解析:
(1)設的公比為q。由成等差數(shù)列,得
.
,則.
不是遞減數(shù)列且,所以.
.
(2)由(1)利用等比數(shù)列的前項和公式,可得得
當n為奇數(shù)時,隨n的增大而減小,所以
.
當n為偶數(shù)時,隨n的增大而增大,所以,

綜上,對于,總有
所以數(shù)列最大項的值為,最小值的值為.
考點:等差中項,等比通項公式;數(shù)列增減性的討論求最值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

的三個內(nèi)角成等差數(shù)列,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知{an}是公比為q的等比數(shù)列,且am、am+2、am+1成等差數(shù)列.
(1)求q的值;
(2)設數(shù)列{an}的前n項和為Sn,試判斷Sm、Sm+2、Sm+1是否成等差數(shù)列?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在等差數(shù)列中,,公差為,其前項和為,在等比數(shù)列 中,,公比為,且,
(1)求
(2)設數(shù)列滿足,求的前項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設數(shù)列的前項和,數(shù)列滿足
(1)求數(shù)列的通項公式;
(2)求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

等差數(shù)列中,
(1)求的通項公式;
(2)設

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知正項數(shù)列中,,前n項和為,當時,有.(1)求數(shù)列的通項公式;
(2)記是數(shù)列的前項和,若的等比中項,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

成等差數(shù)列的三個正數(shù)的和等于15,并且這三個數(shù)分別加上2、5、13后成為等比數(shù)列中的、.
(1)求數(shù)列的通項公式;
(2)數(shù)列的前n項和為,求證:數(shù)列是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列為等差數(shù)列,其公差d不為0,的等差中項為11,且,令,數(shù)列的前n項和為.
(1)求;
(2)是否存在正整數(shù)m,n(1<m<n),使得成等比數(shù)列?若存在,求出所有的m,n的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案