16.若x>-1,則函數(shù)$y=x+\frac{1}{x+1}$取最小值時對應(yīng)的x的值為0.

分析 變形利用基本不等式即可得出.

解答 解:∵x>-1,∴x+1>0.
∴函數(shù)y=x+$\frac{1}{x+1}$=x+1+$\frac{1}{x+1}$-1≥2$\sqrt{(x+1)•\frac{1}{x+1}}$-1=2-1=1,當(dāng)且僅當(dāng)x=0時取等號.
∴函數(shù)y=x+$\frac{1}{x+1}$的最小值為為1.
故答案為:0.

點評 本題考查了基本不等式的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知變量x,y滿足約束條件$\left\{\begin{array}{l}x-y≥2\\ x+y≤4\\ y≥-1\end{array}\right.$,則目標(biāo)函數(shù)z=x-2y的最小值為(  )
A.-1B.1C.3D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在平行四邊形ABCD中,AC與BD交于點O,E是線段OD的中點,AE的延長線與CD相交于點F.若AB=2,$AD=\sqrt{2}$,∠BAD=45°,則$\overrightarrow{AF}•\overrightarrow{BE}$=( 。
A.$\frac{1}{2}$B.1C.-$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知數(shù)列{an}是單調(diào)遞減的等差數(shù)列,S6=S11,有以下四個結(jié)論:
(1)a9=0
(2)當(dāng)n=8或n=9時,Sn取最大值
(3)存在正整數(shù)k使得Sk=0
(4)存在正整數(shù)m使得Sm=S2m
其中正確的是(1),(2),(3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在等比數(shù)列{an}中,已知${a_2}=\frac{1}{2}\;,\;\;{a_5}=4$,則此數(shù)列的公式比為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知A={x|x2-5x+6>0},B={x|log2(x+1)<2}.
(1)求A∩B;
(2)若不等式x2+ax-b<0的解集是A∩B,求實數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若復(fù)數(shù)z滿足(-3+4i)$\overline{z}$=25i,其中i為虛數(shù)單位,則z=(  )
A.4-3iB.4+3iC.-5+3iD.3+4i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)是定義在R上的偶函數(shù),且在區(qū)間[0,+∞)單調(diào)遞減,若實數(shù)a滿足f(log3a)+f(${log}_{\frac{1}{3}}$a)≤2f(2),則a的取值范圍是(  )
A.[$\frac{1}{9}$,9]B.(-∞,$\frac{1}{9}$]C.[$\frac{1}{2}$,2]D.(0,$\frac{1}{9}$]∪[9,+∞]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列各組函數(shù)中,表示同一函數(shù)的是( 。
A.f(x)=2log2x,$g(x)={log_2}{x^2}$B.f(x)=|x|,$g(x)={(\sqrt{x})^2}$
C.f(x)=x,$g(x)=lo{g_2}{2^x}$D.f(x)=x+1,$g(x)=\frac{x^2}{x}-1$

查看答案和解析>>

同步練習(xí)冊答案