如圖,在直角坐標(biāo)系xoy中,坐標(biāo)原點(diǎn)O(0,0),以動(dòng)直線l:y=mx+n(m,n∈R)為軸翻折,使得每次翻折后點(diǎn)O都落在直線y=2上.
(1)求以(m,n)為坐標(biāo)的點(diǎn)的軌跡G的方程;
(2)過(guò)點(diǎn)E(0,
54
)作斜率為k的直線交軌跡G于M,N兩點(diǎn);(ⅰ)當(dāng)+MN|=3時(shí),求M,N兩點(diǎn)的縱坐標(biāo)之和;(ⅱ)問(wèn)是否存在直線,使△OMN的面積等于某一給定的正常數(shù),說(shuō)明你的理由.
分析:(1)因?yàn)槊看畏酆簏c(diǎn)O都落在直線y=2上.所以消參法求軌跡方程.
(2)(。┛上仍O(shè)出直線MN方程為y=kx+
5
4
,與(1)中所得軌跡方程聯(lián)立,得到帶參數(shù)k的一元二次方程,再用弦長(zhǎng)公式求MN長(zhǎng),所求長(zhǎng)度等于3,則得到關(guān)于k的方程,在解方程,即可得到k值進(jìn)而求出M,N縱坐標(biāo)之和.
(ⅱ)先假設(shè)存在直線,使△OMN的面積等于某一給定的正常數(shù),再通過(guò)計(jì)算△OMN的面積,來(lái)判斷假設(shè)是否正確.
解答:解:(1)設(shè)點(diǎn)O翻折后的坐標(biāo)為(x0,2),當(dāng)x0≠0時(shí),有
mx0
2
+n=1
,
2
x0
• m=-1
,消去x0,得,
n=m2+1.
當(dāng)x0=0時(shí),得m=0,n=1.
綜上,動(dòng)點(diǎn)的軌跡方程為y=x2+1.
(2)(ⅰ)設(shè)過(guò)點(diǎn)E(0,
5
4
)作斜率為k的直線方程y=kx+
5
4
,M(x1,y1,),N(x2,y2),
y=x2+1
  y=kx+
5
4
得,x2-kx-
1
4
=0
x1+x2=k,x1x2=-
1
4

|MN|=
1+k2
|x1-x2|=1+k2=3,∴k2=2.
y1+y2=k(x1+x2)+
5
2
=k2+
5
2
=
9
2

(ⅱ)O點(diǎn)到直線y=kx+
5
4
的距離d=
5
4
1+
k2
,使△OMN的面積S=
1
2
|MN|d=
5
8
1+k2
5
8

a>
5
8
時(shí),存在兩條直線滿足條件
a=
5
8
時(shí),存在一條直線滿足條件
a<
5
8
時(shí),不存在直線滿足條件.
點(diǎn)評(píng):本題主要考查了消參法求軌跡方程,以及弦長(zhǎng)公示的利用,計(jì)算量較大,須認(rèn)真計(jì)算,避免出錯(cuò).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•杭州二模)如圖,在直角坐標(biāo)系xOy中,銳角△ABC內(nèi)接于圓x2+y2=1.已知BC平行于x軸,AB所在直線方程為y=kx+m(k>0),記角A,B,C所對(duì)的邊分別是a,b,c.
(1)若3k=
2ac
a2+c2-b2
,求cos2
A+C
2
+sin2B
的值;
(2)若k=2,記∠x(chóng)OA=α(0<α<
π
2
),∠x(chóng)OB=β(π<β<
2
),求sin(α+β)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)系中,中心在原點(diǎn),焦點(diǎn)在X軸上的橢圓G的離心率為e=
15
4
,左頂點(diǎn)A(-4,0),圓O':(x-2)2+y2=r2是橢圓G的內(nèi)接△ABC的內(nèi)切圓.
(Ⅰ) 求橢圓G的方程;
(Ⅱ)求圓O'的半徑r;
(Ⅲ)過(guò)M(0,1)作圓G的兩條切線交橢圓于E,F(xiàn)兩點(diǎn),判斷直線EF與圓O'的位置關(guān)系,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•石景山區(qū)二模)如圖,在直角坐標(biāo)系xOy中,角α的頂點(diǎn)是原點(diǎn),始邊與x軸正半軸重合,終邊交單位圓于點(diǎn)A,且α∈(
π
6
,
π
2
)
.將角α的終邊按逆時(shí)針?lè)较蛐D(zhuǎn)
π
3
,交單位圓于點(diǎn)B.記A(x1,y1),B(x2,y2).
(Ⅰ)若x1=
1
3
,求x2;
(Ⅱ)分別過(guò)A,B作x軸的垂線,垂足依次為C,D.記△AOC的面積為S1,△BOD的面積為S2.若S1=2S2,求角α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)系xOy中,角α的頂點(diǎn)是原點(diǎn),始邊與x軸正半軸重合,終邊交單位圓于點(diǎn)A,且α∈(
π
3
,
π
2
)
.將角α的終邊按逆時(shí)針?lè)较蛐D(zhuǎn)
π
6
,交單位圓于點(diǎn)B.記A(x1,y1),B(x2,y2).
(Ⅰ)若x1=
1
4
,求x2; 
(Ⅱ)分別過(guò)A,B作x軸的垂線,垂足依次為C,D.記△AOC的面積為S1,△BOD的面積為S2.若S1=S2,求角α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)系中,已知射線OA:x-y=0(x≥0),OB:
3
x+3y=0(x≥0),過(guò)點(diǎn)P(a,0)(a>0)作直線l分別交射線OA,OB于A,B兩點(diǎn),且
AP
=2
PB
,則直線l的斜率為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案