【題目】某市甲水廠每天生產(chǎn)萬噸的生活用水,其每天固定生產(chǎn)成本為萬元,居民用水的稅費(fèi)價(jià)格為每噸元,該市居民每天用水需求量是在(單位:萬噸)內(nèi)的隨機(jī)數(shù),經(jīng)市場(chǎng)調(diào)查,該市每天用水需求量的頻率分布直方圖如圖所示,設(shè)(單位:萬噸, )表示該市一天用水需求量(單位:萬元)表示甲水廠一天銷售生活用水的利潤(利潤=稅費(fèi)收入-固定生產(chǎn)成本),注:當(dāng)該市用水需求量超過萬噸時(shí),超過的部分居民可以用其他水廠生產(chǎn)的水,甲水廠只收成本廠供應(yīng)的稅費(fèi),該市每天用水需求量的概率用頻率估計(jì).

(1)求的值,并直接寫出表達(dá)式;

(2)求甲水廠每天的利潤不少于萬元的概率.

【答案】(1)答案見解析;(2)0.8.

【解析】試題分析:

(1)由題意可得(萬元)(萬元),表達(dá)式為

(2)依題意可知:當(dāng)時(shí),利潤,由,解得,當(dāng)時(shí),利潤萬元,顯然滿足條件,則甲水廠每天的利潤不少于萬元的概率為.

試題解析:

1(萬元)

(萬元)

所以

2)依題意,當(dāng)時(shí),利潤,

,解得,即

當(dāng)時(shí),利潤萬元,顯然滿足條件,

,

所以甲水廠每天的利潤不少于萬元的概率為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)集具有性質(zhì):對(duì)任意的、兩數(shù)中至少有一個(gè)屬于.

1)分別判斷數(shù)集是否具有性質(zhì),并說明理由;

2)證明:;

3)證明:當(dāng)時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求證:恒成立;

(2)若關(guān)于的方程至少有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠今年前三個(gè)月生產(chǎn)某種產(chǎn)品的數(shù)量統(tǒng)計(jì)表如下:

為了估測(cè)以后每個(gè)月的產(chǎn)量,以這三個(gè)月的產(chǎn)量為依據(jù),用一個(gè)函數(shù)模擬產(chǎn)品的月產(chǎn)量與月份的關(guān)系,模擬函數(shù)可選擇二次函數(shù)為常數(shù)且),或函數(shù)為常數(shù)).已知4月份的產(chǎn)量為1.37萬件,請(qǐng)問用以上哪個(gè)函數(shù)作為模擬函數(shù)較好,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù).

(1)求證:當(dāng)時(shí),對(duì)任意都有;

(2)若函數(shù)有兩個(gè)極值點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C過點(diǎn)M0-2)、N(3,1),且圓心C在直線x+2y+1=0上.

(1)求圓C的方程;

(2)設(shè)直線ax-y+1=0與圓C交于A,B兩點(diǎn),是否存在實(shí)數(shù)a,使得過點(diǎn)P(2,0)的直線l垂直平分弦AB?若存在,求出實(shí)數(shù)a的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校舉行了一次安全教育知識(shí)競(jìng)賽,競(jìng)賽的原始成績采用百分制,已知高三學(xué)生的原始成績均分布在內(nèi),發(fā)布成績使用等級(jí)制,各等級(jí)劃分標(biāo)準(zhǔn)見表.

原始成績

85分及以上

70分到84

60分到69

60分以下

等級(jí)

優(yōu)秀

良好

及格

不及格

為了解該校高三年級(jí)學(xué)生安全教育學(xué)習(xí)情況,從中抽取了名學(xué)生的原始成績作為樣本進(jìn)行統(tǒng)計(jì)按照的分組作出頻率分布直方圖如圖所示,其中等級(jí)為不及格的有5人,優(yōu)秀的有3人.

1)求和頻率分布直方圖中的的值

2)根據(jù)樣本估計(jì)總體的思想,以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,若該校高三學(xué)生共1000人,求競(jìng)賽等級(jí)在良好及良好以上的人數(shù);

3)在選取的樣本中,從原始成績?cè)?/span>80分以上的學(xué)生中隨機(jī)抽取2名學(xué)生進(jìn)行學(xué)習(xí)經(jīng)驗(yàn)介紹,求抽取的2名學(xué)生中優(yōu)秀等級(jí)的學(xué)生恰好有1人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)exax1.

1)求f(x)的單調(diào)增區(qū)間;

2)若f(x)在定義域R內(nèi)單調(diào)遞增,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知菱形的邊長為2, . 是邊上一點(diǎn),線段于點(diǎn).

(1)若的面積為,求的長;

(2)若,求.

查看答案和解析>>

同步練習(xí)冊(cè)答案