2.若函數(shù)f(x)=|sinx|(x≥0)的圖象與過原點的直線有且只有三個交點,交點的橫坐標的最大值為α,則$\frac{{(1+{α^2})sin2α}}{α}$的值為( 。
A.2B.$\frac{5}{2}$C.3D.4

分析 先根據(jù)題意畫圖,然后令切點為A(α,-sinα),α∈(π,$\frac{3π}{2}$),在(π,$\frac{3π}{2}$)上,根據(jù)切線的斜率等于切點處的導數(shù)建立等式關系,即可求出α=tanα,代入所求化簡即可求出所求.

解答 解:函數(shù)f(x)=|sinx|(x≥0)與直線有且只有三個交點,
令切點為A(α,-sinα),α∈(π,$\frac{3π}{2}$),在(π,$\frac{3π}{2}$)上,f′(x)=-cosx,
∴-cosx=-$\frac{sinα}{α}$,即α=tanα,
故$\frac{{(1+{α^2})sin2α}}{α}$=$\frac{(1{+tan}^{2}α)•sin2α}{tanα}$=$\frac{sin2α}{sinαcosα}$=2,
故選:A.

點評 本題主要考查了利用導數(shù)研究曲線上某點切線方程,以及三角函數(shù)的運算,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

17.已知三條直線l1、l2、l3,它們的傾斜角之比依次為1:2:3,若l2的斜率為$\sqrt{3}$,求其余兩條直線的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.設$max\{a,b\}=\left\{{\begin{array}{l}a&{(a≥b)}\\ b&{(a<b)}\end{array}}\right.$,已知x,y∈R,m+n=6,則F=max{|x2-4y+m|,|y2-2x+n|}的最小值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.在直角梯形ABCD中,已知BC∥AD,AB⊥AD,AB=AD=4,BC=2,若P為線段CD上一點,且滿足$\overrightarrow{DP}=λ\overrightarrow{DC}$,$\overrightarrow{PA}$•$\overrightarrow{PB}$=5,則$|{\overrightarrow{PA}}$|=$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.設函數(shù)f(x),若f(x)=$\left\{{\begin{array}{l}{{x^2}+2x+2,x≤0}\\{-{x^2},x>0}\end{array}}$,f(f(1))=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知下列命題:
(1)若$\overrightarrow a$•$\overrightarrow b$=$\overrightarrow a$•$\overrightarrow c(\overrightarrow a≠\overrightarrow 0)$,則$\overrightarrow b$=$\overrightarrow c$;
(2)若$\overrightarrow{a}$•$\overrightarrow$=0,則$\overrightarrow{a}$=$\overrightarrow{0}$或$\overrightarrow$=$\overrightarrow{0}$;
(3)若不平行的兩個非零向量$\overrightarrow{a}$,$\overrightarrow$,滿足|$\overrightarrow a$|=|$\overrightarrow b|$,則($\overrightarrow a$-$\overrightarrow b$)•($\overrightarrow a$+$\overrightarrow b$)=0;
(4)若$\overrightarrow{a}$與$\overrightarrow$平行,則$\overrightarrow a$•$\overrightarrow b$=|$\overrightarrow a$||$\overrightarrow b$|;
其中真命題的個數(shù)是1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.(Ⅰ)已知奇函數(shù)f(x)的定義域為[-2,2],且在區(qū)間[-2,0]上遞減,求滿足f(1-m)+f(1-m2)<0的實數(shù)m的取值范圍.
(Ⅱ)已知f(x)為定義在[a-1,2a+1]上的偶函數(shù),當x≥0時,f(x)=ex+1,則f(2x+1)>f($\frac{x}{2}$+1)的解x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.x2-4x+y2=0的圓心到直線x+$\sqrt{3}$y-4=0的距離是1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.正方體ABCD-A1B1C1D1中,連接A1C1,A1B,BC1,AD1,AC,CD1
(1)求證:A1C1∥平面ACD1;
(2)求證:平面A1BC1∥平面ACD1;
(3)設正方體ABCD-A1B1C1D1的棱長為a,求四面體ACB1D1的體積.

查看答案和解析>>

同步練習冊答案