分析 (Ⅰ) 由題意可知:求得A,B,F(xiàn)1,P點(diǎn)坐標(biāo),由kAB=kOP,根據(jù)斜率公式,求得b和c的值,根據(jù)橢圓的性質(zhì),$a=\sqrt{2}c$,由$|{F_1}A|\;=\;a+c=(\sqrt{2}+1)\sqrt{5}$,即可求得a和b的值,求得橢圓方程;
(Ⅱ) 由題意可知:根據(jù)中點(diǎn)坐標(biāo)公式,求得M點(diǎn)坐標(biāo),將M代入橢圓方程,即可求得Q的軌跡方程.
解答 解:(Ⅰ) 由題意可知,$A\;(\;a,\;\;0\;),B\;(\;0,\;\;b\;),{F_1}\;(\;-c,\;\;0\;),P\;(\;-c,\;\;\frac{b^2}{a}\;)$,
∵AB∥OP,
∴kAB=kOP,
∴$-\frac{a}=-\frac{b^2}{ac}⇒b=c$,
∵a2=b2+c2,
∴a2=2c2,
∴$a=\sqrt{2}c$,
∴$a+c=(\sqrt{2}+1)\;c$,$|{F_1}A|\;=\;a+c=(\sqrt{2}+1)\sqrt{5}$,
∴$a=\sqrt{10}$,$c=\sqrt{5}$,$b=\sqrt{5}$,
∴橢圓方程為$\frac{x^2}{10}+\frac{y^2}{5}=1$.
(Ⅱ) 設(shè)Q(x,y),已知點(diǎn)Q為線段MN中點(diǎn),N(4,2),則M(2x-4,2y-2),
∵M(jìn)是橢圓$\frac{x^2}{10}+\frac{y^2}{5}=1$上的動(dòng)點(diǎn),
∴$\frac{{{{(2x-4)}^2}}}{10}+\frac{{{{(2y-2)}^2}}}{5}=1$,
即$\frac{{2{{(x-2)}^2}}}{5}+\frac{{4{{(y-1)}^2}}}{5}=1$.
點(diǎn)評(píng) 本題考查橢圓的標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系,中點(diǎn)坐標(biāo)公式公式,求動(dòng)點(diǎn)的軌跡方程,考查計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -4 | B. | -6 | C. | -7 | D. | -8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -3 | B. | -1 | C. | 1 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com