【題目】已知集合A={x|2x2﹣3x﹣9≤0},B={x|x≥m}.若(RA)∩B=B,則實(shí)數(shù)m的值可以是( )
A.1
B.2
C.3
D.4
【答案】D
【解析】解:由A中不等式變形得:(2x+3)(x﹣3)≤0,
解得:﹣ ≤x≤3,即A=[﹣ ,3],
∴RA=(﹣∞,﹣ )∪(3,+∞),
∵B=[m,+∞),且(RA)∩B=B,
∴BRA,即m>3,
則實(shí)數(shù)m的值可以是4,
故選:D.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解交、并、補(bǔ)集的混合運(yùn)算(求集合的并、交、補(bǔ)是集合間的基本運(yùn)算,運(yùn)算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時(shí),常常從這兩個(gè)字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語(yǔ)言表達(dá),增強(qiáng)數(shù)形結(jié)合的思想方法).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)若整數(shù)滿足關(guān)系式,證明:.
(2)試寫出不定方程的一組正整數(shù)解,并對(duì)此解驗(yàn)證.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體中,過對(duì)角線的一個(gè)平面交于點(diǎn),交于.
①四邊形一定是平行四邊形;
②四邊形有可能是正方形;
③四邊形在底面內(nèi)的投影一定是正方形;
④四邊形有可能垂直于平面.
以上結(jié)論正確的為_______________.(寫出所有正確結(jié)論的編號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=.
(1)若f(x)的值域?yàn)镽,求實(shí)數(shù)a的取值范圍;
(2)若函數(shù)f(x)在(﹣∞,1)上為增函數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,△ABC內(nèi)接于圓O,D是 的中點(diǎn),∠BAC的平分線分別交BC和圓O于點(diǎn)E,F(xiàn).
(1)求證:BF是△ABE外接圓的切線;
(2)若AB=3,AC=2,求DB2﹣DA2的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某幾何體的三視圖如圖所示,記A為此幾何體所有棱的長(zhǎng)度構(gòu)成的集合,則( )
A.3∈A
B.5∈A
C.2 ∈A
D.4 ∈A
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓()離心率等于,P(2,3)、Q(2,﹣3)是橢圓上的兩點(diǎn).
(1)求橢圓C的方程;
(2)A,B是橢圓上位于直線PQ兩側(cè)的動(dòng)點(diǎn),若直線AB的斜率為,求四邊形APBQ面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某居民區(qū)的物業(yè)部門每月向居民收取衛(wèi)生費(fèi),計(jì)費(fèi)方法如下:3人和3人以下的住戶,每戶收取5元;超過3人的住戶,每超出1人加收1.2元.設(shè)計(jì)一個(gè)算法,根據(jù)輸入的人數(shù),計(jì)算應(yīng)收取的衛(wèi)生費(fèi),并畫出程序框圖.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,長(zhǎng)方體ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,點(diǎn)E,F分別在A1B1,D1C1上,A1E=D1F=4,過點(diǎn)E,F的平面α與此長(zhǎng)方體的面相交,交線圍成一個(gè)正方形.
(1)在圖中畫出這個(gè)正方形(不必說明畫法和理由);
(2)求直線AF與平面α所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com