2.曲線y=$\frac{x}{x-2}$在點(diǎn)(1,-1)處的切線方程為(  )
A.y=x-3B.y=-2x+1C.y=2x-4D.y=-2x-3

分析 先求得y在點(diǎn)(1,-1)處的導(dǎo)數(shù)為-2,利用點(diǎn)斜式求得函數(shù)y在點(diǎn)(1,-1)處的切線方程.

解答 解:對(duì)于函數(shù)y=$\frac{x}{x-2}$,∵y′=$\frac{-2}{{(x-2)}^{2}}$,∴y在點(diǎn)(1,-1)處的導(dǎo)數(shù)為-2,
故y=$\frac{x}{x-2}$在點(diǎn)(1,-1)處的切線斜率為-2,故y=$\frac{x}{x-2}$在點(diǎn)(1,-1)處的切線方程為y+1=-2(x-1),
即y=-2x+1,
故選:B.

點(diǎn)評(píng) 本題主要考查函數(shù)在某一點(diǎn)的導(dǎo)數(shù)的意義,求曲線在某一點(diǎn)切線的方程,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知下列四個(gè)命題:
①函數(shù)f(x)=1og2(x+$\sqrt{1+{x}^{2}}$),g(x)=sin3x+tanx均是奇函數(shù);
②函數(shù)f(x)=sin(x-$\frac{π}{4}$)的圖象的一個(gè)對(duì)稱(chēng)中心是(-$\frac{3π}{4}$,0);
③若函數(shù)f(x)的圖象關(guān)于點(diǎn)(1,0)成中心對(duì)稱(chēng)圖形,且滿足f(4-x)=f(x),那么f(2012)=f(2013);
④函數(shù)f(x)=1gx-cosx恰有3個(gè)零點(diǎn).
其中正確命題的序號(hào)是①②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,正四棱錐P-ABCD中底面邊長(zhǎng)為2$\sqrt{2}$,側(cè)棱PA與底面ABCD所成角的正切值為$\frac{{\sqrt{6}}}{2}$.
(1)求正四棱錐P-ABCD的外接球半徑;
(2)若E是PB中點(diǎn),求異面直線PD與AE所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.計(jì)算$\frac{{a}^{2}}{\sqrt{a}•\root{3}{{a}^{2}}}$的結(jié)果為(  )
A.a${\;}^{\frac{3}{2}}$B.a${\;}^{\frac{1}{6}}$C.a${\;}^{\frac{5}{6}}$D.a${\;}^{\frac{6}{5}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.某市的出租車(chē)收費(fèi)辦法如下:
不超過(guò)2公里收7元(即起步價(jià)7元),超過(guò)2公里的里程每公里加收2.5元,另外每車(chē)次超過(guò)2公里收燃油附加費(fèi)1元(不考慮其他因素).相應(yīng)收費(fèi)系統(tǒng)的程序框圖如圖所示,則①處應(yīng)填(  )
A.y=7+2.5xB.y=8+2.5xC.y=2+2.5xD.y=3+2.5x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.在空間直角坐標(biāo)系中,點(diǎn)A(-4,-1,-9)與點(diǎn)B(-10,1,-6)的距離是(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,公比q>0,S2=2a2-2,S3=a4-2
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\left\{\begin{array}{l}\frac{{{{log}_2}{a_n}}}{{{n^2}({n+2})}}n為奇數(shù)\\ \frac{n}{a_n}\;\;n為偶數(shù)\end{array}$,Tn為{bn}的前n項(xiàng)和,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)f(x)=$\left\{\begin{array}{l}{2{e}^{x-1},x<2}\\{lo{g}_{3}({2}^{x}-1),x≥2}\end{array}\right.$則f(f(2))等于(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知函數(shù)F(x)=lnx(x>1)的圖象與函數(shù)G(x)的圖象關(guān)于直線y=x對(duì)稱(chēng),若函數(shù)f(x)=(k-1)x-G(-x)無(wú)零點(diǎn),則實(shí)數(shù)k的取值范圍是( 。
A.(1-e,1)B.(1-e,∞)C.(1-e,1]D.(-∞,1-e)∪[1,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案