8、f(x)是定義在R上的任意一個增函數(shù),G(x)=f(x)-f(-x),則G(x)必定是
增函數(shù)且為奇函數(shù)
分析:用定義驗證奇偶性,再根據(jù)單調(diào)性的判斷規(guī)則確定函數(shù)的單調(diào)性即可.
解答:解:∵G(x)=f(x)-f(-x),∴G(-x)=f(-x)-f(x)=-[f(x)-f(-x)]=-G(x),∴G(x)必定是奇函數(shù).
又f(x)是定義在R上的任意一個增函數(shù),由復(fù)合函數(shù)的單調(diào)性知f(-x)是定義在R上的任意一個減函數(shù),
故f(x)-f(-x)是一個增函數(shù)
故答案為:增函數(shù)且為奇函數(shù)
點評:本題考查函數(shù)奇偶性的判斷以及函數(shù)單調(diào)性的判斷,屬于函數(shù)性質(zhì)中的基本題型.題目難度較小,其中判斷函數(shù)的單調(diào)性用上了判斷規(guī)律,要注意總結(jié)規(guī)律.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上的偶函數(shù),且x≥0時,f(x)=(
1
2
x,函數(shù)f(x)的值域為集合A.
(Ⅰ)求f(-1)的值;
(Ⅱ)設(shè)函數(shù)g(x)=
-x2+(a-1)x+a
的定義域為集合B,若A⊆B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在R上的函數(shù),對任意實數(shù)m、n,都有f(m)•f(n)=f(m+n),且當(dāng)x<0時,f(x)>1.
(1)證明:①f(0)=1;②當(dāng)x>0時,0<f(x)<1;③f(x)是R上的減函數(shù);
(2)設(shè)a∈R,試解關(guān)于x的不等式f(x2-3ax+1)•f(-3x+6a+1)≥1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在R上的奇函數(shù),且當(dāng)x≥0時,f(x)單調(diào)遞減,若x1+x2>0,則f(x1)+f(x2)的值( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)是定義在R上的奇函數(shù),滿足f(x+2)=f(x),當(dāng)x∈(-2,0)時,f(x)=2x-2,則f(-3)的值等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在R上的函數(shù),且對任意實數(shù)x,恒有f(x+2)=-3f(x).當(dāng)x∈[0,2]時,f(x)=2x-x2.則f(0)+f(-1)+f(-1)+…+f(-2014)=( 。
A、-
3
4
(1-31007
B、-
3
4
(1+31007
C、-
1
4
(1-
1
31007
D、-
1
4
(1+
1
31007

查看答案和解析>>

同步練習(xí)冊答案