方程x2-mx+
m
2
=0的兩根為α,β,且0<α<1<β<2,則實數(shù)m的取值范圍是
 
考點:一元二次方程的根的分布與系數(shù)的關(guān)系
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:構(gòu)造二次函數(shù)f(x)=x2-mx+
m
2
,根據(jù)一元二次函數(shù)的性質(zhì)與圖象知,考查x=1,0,2處的函數(shù)值的符號即可
解答: 解:方程x2-mx+1=0對應(yīng)的二次函數(shù)f(x)=x2-mx+1,
方程x2-mx+
m
2
=0兩根為α,β,且0<α<1<β<2,
f(0)>0
f(1)<0
f(2)>0

解得2<m<
8
3

故答案為:2<m<
8
3
點評:本題考查一元二次方程的根的分布與系數(shù)的關(guān)系.考查一元二次函數(shù)的圖象與性質(zhì)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知2Sn=an+
1
an
,則S2014=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

國際乒乓聯(lián)將比賽用“小球”改為“大球”,“小球”直徑38cm,“大球”直徑為40cm,則“大球”與“小球”的表面積之比為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P在拋物線y2=
1
2
x上,點Q在圓(x-2)2+y2=1上,求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖為一個幾何體的三視圖,尺寸如圖所示,則該幾何體的體積為( 。
A、2
3
+
3
π
27
B、3
3
+
4
3
π
27
C、5
3
+
π
6
D、5
3
+
4
3
π
27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)學(xué)歸納法證明:1+
1
2
+
1
3
+…+
1
2n
<k+1(n∈N*),由n=k(k∈N*)不等式成立,推證n=k+1時,左邊應(yīng)增加的項數(shù)是( 。
A、2k
B、2k-1
C、2k+1
D、2k-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直角梯形ABCD,AB⊥AD,CD⊥AD,AB=2AD=2CD=2,沿AC折疊成三棱錐,當(dāng)三棱錐體積最大時,三棱錐外接球的體積為
 
;當(dāng)三棱錐外接球的體積最小時,三棱錐的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC三個內(nèi)角A,B,C所對邊分別為a,b,c,若
a2+c2-b2
a2+b2-c2
=
c
2a-c
,且a+c=8,則△ABC面積的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左右焦點分別為F1,F(xiàn)2,過F2的直線交雙曲線的右支于P,Q兩點,若|PF1|=|F1F2|,且3|PF2|=2|QF2|,則該雙曲線的離心率為
 

查看答案和解析>>

同步練習(xí)冊答案