【題目】從甲乙兩個城市分別隨機(jī)抽取16臺自動售貨機(jī),對其銷售額進(jìn)行統(tǒng)計,統(tǒng)計數(shù)據(jù)用莖葉圖表示(如圖所示),設(shè)甲乙兩組數(shù)據(jù)的平均數(shù)分別為中位數(shù)分別為則(

A. xx,mm B. xx,mm

C. xx,mm D. xx,mm

【答案】D

【解析】

直接求出甲與乙的平均數(shù),以及甲與乙的中位數(shù),即可得到選項

甲的平均數(shù)=(5+6+8+10+10+14+18+18+22+25+27+30+30+38+41+43)=

乙的平均數(shù)=(10+12+18+20+22+23+23+27+31+32+34+34+38+42+43+48)=,

所以

甲的中位數(shù)為20,乙的中位數(shù)為29,所以mm,

故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)是這樣定義的:對于任意整數(shù)m,當(dāng)實數(shù)x滿足不等式|x﹣m|< 時,有f(x)=m.
(1)求函數(shù)f(x)的定義域D,并畫出它在x∈D∩[0,3]上的圖象;
(2)若數(shù)列an=2+10( n , 記Sn=f(a1)+f(a2)+f(a3)+…+f(an),求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的兩個焦點分別為, ,且點在橢圓.

1求橢圓的標(biāo)準(zhǔn)方程;

2設(shè)橢圓的左頂點為,過點的直線與橢圓相交于異于的不同兩點,求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動點到定點的距離和它到直線的距離的比值為常數(shù),記動點的軌跡為曲線.

(1)求曲線的方程;

(2)若直線與曲線相交于不同的兩點, ,直線與曲線相交于不同的兩點 ,且,求以, , , 為頂點的凸四邊形的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=ax2-(3a-1)x+a2在[1,+∞)上是增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PD⊥底面ABCD,底面ABCD為正方形,PD=DC,E、F分別是AB、PB的中點

(1)求證:EF⊥CD;
(2)在平面PAD內(nèi)求一點G,使GF⊥平面PCB,并證明你的結(jié)論;
(3)求DB與平面DEF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線與曲線有且只有一個交點,則b的取值范圍是(

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)= sin2x﹣cos2x﹣ ,(x∈R).
(1)求函數(shù)f(x)的最小值和最小正周期;
(2)設(shè)△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,且c= ,f(C)=0,若 =(1,sinA)與 =(2,sinB)共線,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在正方體中,上一點,的中點,平面

(Ⅰ)求證:平面

(Ⅱ)求與平面所成的角

查看答案和解析>>

同步練習(xí)冊答案