【題目】若函數(shù)f(x)=ax2-(3a-1)x+a2在[1,+∞)上是增函數(shù),求實(shí)數(shù)a的取值范圍.

【答案】0≤a≤1.

【解析】試題分析:先討論參數(shù)a是否為0,若a=0,代入可得一次函數(shù)是增函數(shù),成立;若a≠0,則二次函數(shù)開(kāi)口向上,x=1在對(duì)稱軸的右側(cè),列出不等式解出a的范圍即可.

試題解析:

①a=0時(shí),f(x)=x在[1,+∞)上是增函數(shù).

②a≠0時(shí),∵f(x)在[1,+∞)上是增函數(shù).

解得0<a≤1.

綜上0≤a≤1.

點(diǎn)睛:本題考查一次函數(shù)和二次函數(shù)的單調(diào)性,屬于基礎(chǔ)題.根據(jù)函數(shù)解析式的形式,先要對(duì)最高次項(xiàng)的系數(shù)進(jìn)行討論,當(dāng)a=0時(shí),函數(shù)為一次函數(shù),將a=0代入可知一次項(xiàng)系數(shù)為正,故為增函數(shù);當(dāng)a≠0時(shí),函數(shù)為二次函數(shù),若要使函數(shù)在[1,+∞)上是增函數(shù),則需要開(kāi)口向上,且[1,+∞)為增區(qū)間的子集,比較對(duì)稱軸和1的大小關(guān)系列出不等式求解即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】袋子中有四個(gè)小球,分別寫有”“”“”“樂(lè)四個(gè)字,有放回地從中任取一個(gè)小球,取到就停止,用隨機(jī)模擬的方法估計(jì)直到第二次停止的概率:先由計(jì)算器產(chǎn)生14之間取整數(shù)值的隨機(jī)數(shù),且用1,2,3,4表示取出小球上分別寫有”“”“”“樂(lè)四個(gè)字,以每?jī)蓚(gè)隨機(jī)數(shù)為一組,代表兩次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了20組隨機(jī)數(shù):

13 24 12 32 43 14 24 32 31 21

23 13 32 21 24 42 13 32 21 34

據(jù)此估計(jì),直到第二次就停止的概率為(  )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的右焦點(diǎn),橢圓的左,右頂點(diǎn)分別為.過(guò)點(diǎn)的直線與橢圓交于兩點(diǎn),且的面積是的面積的3倍.

(Ⅰ)求橢圓的方程;

(Ⅱ)若軸垂直,是橢圓上位于直線兩側(cè)的動(dòng)點(diǎn),且滿足,試問(wèn)直線的斜率是否為定值,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市公租房的房源位于四個(gè)片區(qū),設(shè)每位申請(qǐng)人只申請(qǐng)其中一個(gè)片區(qū)的房源,且申請(qǐng)其中任一個(gè)片區(qū)的房源是等可能的,在該市的甲、乙、丙三位申請(qǐng)人中:

(1)求恰有1人申請(qǐng)片區(qū)房源的概率;

(2)用表示選擇片區(qū)的人數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人玩擲骰子游戲,甲擲出的點(diǎn)數(shù)記為,乙擲出的點(diǎn)數(shù)記為,

若關(guān)于的一元二次方程有兩個(gè)不相等的實(shí)數(shù)根時(shí)甲勝;方程有

兩個(gè)相等的實(shí)數(shù)根時(shí)為“和”;方程沒(méi)有實(shí)數(shù)根時(shí)乙勝.

(1)列出甲、乙兩人“和”的各種情形;

(2)求甲勝的概率.

必要時(shí)可使用此表格

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量a=(x+z,3),b=(2,y-z),且a⊥b.若x,y滿足不等式|x|+|y|≤1,則z的取值范圍是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知自變量x,y滿足則當(dāng)3S5時(shí),z3x2y的最大值的變化范圍為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【2017屆河南省鄭州市第一中學(xué)高三上學(xué)期第一次質(zhì)量檢測(cè)數(shù)學(xué)(文)】已知函數(shù)

(1)證明:;

(2)若對(duì)任意,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),曲線在點(diǎn)處的切線與直線垂直.

1)求的值;

(2)若對(duì)于任意的, 恒成立,求的取值范圍;

(3)求證:

查看答案和解析>>

同步練習(xí)冊(cè)答案