(本題12分)

已知橢圓的右焦點(diǎn)為F,上頂點(diǎn)為A,P為C上任一點(diǎn),MN是圓的一條直徑,若與AF平行且在y軸上的截距為的直線恰好與圓相切.

(Ⅰ)求橢圓的離心率;

(Ⅱ)若的最大值為49,求橢圓C的方程.

 

【答案】

(Ⅰ)  (Ⅱ)。

【解析】

試題分析:(Ⅰ)由題意可知直線l的方程為

因?yàn)橹本與圓相切,所以,即

從而                                 …………………5分

(Ⅱ)設(shè)、圓的圓心記為,則

﹥0),又=

 . …………………8分

j當(dāng);

k當(dāng)

故舍去.

綜上所述,橢圓的方程為.                …………………12分

考點(diǎn):橢圓的標(biāo)準(zhǔn)方程及簡(jiǎn)單性質(zhì);直線與圓的位置關(guān)系;直線方程的截距式;平面向量的數(shù)量積;點(diǎn)到直線的距離公式。

點(diǎn)評(píng):本題主要考查直線、圓、橢圓的基本性質(zhì)及位置關(guān)系的應(yīng)用,滲透向量、函數(shù)最值等問題,培養(yǎng)學(xué)生綜合運(yùn)用知識(shí)的能力.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年福建省高三第一次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題12分)已知函數(shù)的圖像關(guān)于原點(diǎn)對(duì)稱,并且當(dāng)時(shí),,試求上的表達(dá)式,并畫出它的圖像,根據(jù)圖像寫出它的單調(diào)區(qū)間。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年福建省高一上學(xué)期期末考試數(shù)學(xué)試卷 題型:解答題

(本題12分)已知函數(shù)(1)求的定義域;(2)求的值域。

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年寧夏高三第一次月考理科數(shù)學(xué)卷 題型:解答題

(本題12分)

已知函數(shù)

(1)證明:函數(shù)關(guān)于點(diǎn)對(duì)稱.

(2)求的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年浙江省杭州市七校高一上學(xué)期期中考試數(shù)學(xué)試卷 題型:解答題

(本題12分)已知函數(shù)

(1)當(dāng)時(shí),求函數(shù)的單調(diào)遞減區(qū)間;

(2)當(dāng)時(shí),上恒大于0,求實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:陜西省2009-2010學(xué)年度第二學(xué)期期末考試高二數(shù)學(xué)(文科)試題 題型:解答題

(本題12分)已知關(guān)于的不等式,其中.

(Ⅰ)當(dāng)變化時(shí),試求不等式的解集 ;

(Ⅱ)對(duì)于不等式的解集,若滿足(其中為整數(shù)集). 試探究集合能否為有限集?若能,求出使得集合中元素個(gè)數(shù)最少的的所有取值,并用列舉法表示集合;若不能,請(qǐng)說(shuō)明理由.

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案