(本小題滿分16分)
已知數(shù)列是各項(xiàng)均為正數(shù)的等差數(shù)列.
(1)若,且,,成等比數(shù)列,求數(shù)列的通項(xiàng)公式;
(2)在(1)的條件下,數(shù)列的前和為,設(shè),若對任意的,不等式恒成立,求實(shí)數(shù)的最小值;
(3)若數(shù)列中有兩項(xiàng)可以表示為某個(gè)整數(shù)的不同次冪,求證:數(shù)列 中存在無窮多項(xiàng)構(gòu)成等比數(shù)列.
(1)的通項(xiàng)公式.(2)實(shí)數(shù)的最小值為
(3)有等比數(shù)列,其中.   
本試題主要是考查了數(shù)列的通項(xiàng)公式和數(shù)列求和的綜合運(yùn)用。
(1)因?yàn)橐驗(yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223142693796.png" style="vertical-align:middle;" /> 又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223141804466.png" style="vertical-align:middle;" />是正項(xiàng)等差數(shù)列,故,利用等差數(shù)列的某兩項(xiàng)可知其通項(xiàng)公式的求解。
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223142818592.png" style="vertical-align:middle;" />,可知其的通項(xiàng)公式,利用裂項(xiàng)求和的思想得到結(jié)論。
(3)因?yàn)檫@個(gè)數(shù)列的所有項(xiàng)都是正數(shù),并且不相等,所以,
設(shè)其中 是數(shù)列的項(xiàng),是大于1的整數(shù),
分析證明。
(1)因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223142693796.png" style="vertical-align:middle;" /> 又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223141804466.png" style="vertical-align:middle;" />是正項(xiàng)等差數(shù)列,故
所以,得(舍去) ,
所以數(shù)列的通項(xiàng)公式.………………………………………………4分
(2) 因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223142818592.png" style="vertical-align:middle;" />,
,

  
,則, 當(dāng)時(shí),恒成立,
所以上是增函數(shù),故當(dāng)時(shí),,即當(dāng)時(shí),, 要使對任意的正整數(shù), 不等式恒成立,
則須使, 所以實(shí)數(shù)的最小值為.…………………………10分
(3)因?yàn)檫@個(gè)數(shù)列的所有項(xiàng)都是正數(shù),并且不相等,所以,
設(shè)其中 是數(shù)列的項(xiàng),是大于1的整數(shù),,
,則
的整數(shù)倍,對次冪,
所以,右邊是的整數(shù)倍.
所有這種形式是數(shù)列中某一項(xiàng),
因此有等比數(shù)列,其中.   …………………………16分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)在數(shù)列中,.
(1)設(shè)證明是等差數(shù)列;
(2)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知等差數(shù)列{an},a 2+a18 ="36" ,則a 5+a 6+…+a 15 =(     )
A. 130B. 198C.180D.156

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分7分)
已知等差數(shù)列{}的前n項(xiàng)和為Sn,且 bn-30
(1)求通項(xiàng);   (2)求數(shù)列{bn}的前n項(xiàng)和Tn的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題9分) 已知數(shù)列的前項(xiàng)和 (1)求數(shù)列的通項(xiàng)公式;(2)令,記數(shù)列{}的前項(xiàng)和為,求。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列的前n項(xiàng)和為,
(1)證明:數(shù)列是等差數(shù)列,并求;
(2)設(shè),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在每個(gè)三角形的頂點(diǎn)處各放置一個(gè)數(shù),使位于△ABC的三邊及平行于某邊的任一直線上的數(shù)(當(dāng)數(shù)的個(gè)數(shù)不少于3時(shí))都分別成等差數(shù)列.若頂點(diǎn)A,B,C處的三個(gè)數(shù)互不相同且和為l,則所有頂點(diǎn)上的數(shù)之和等于        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

各項(xiàng)為正數(shù)的數(shù)列,,其前項(xiàng)的和為,且,則        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

等差數(shù)列中,=_______________.

查看答案和解析>>

同步練習(xí)冊答案