8.設(shè)x∈Z,集合A是奇數(shù)集,集B是偶數(shù)集.若命題p:?x∈A,2x∈B;則命題p的否定是?p:?x∈A,2x∉B.

分析 “全稱命題”的否定一定是“存在性命題”據(jù)此可解決問題.

解答 解:∵“全稱命題”的否定一定是“存在性命題”,
∴命題p:?x∈A,2x∈B 的否定是:?p:?x∈A,2x∉B;
故答案為:?p:?x∈A,2x∉B;

點評 本小題主要考查命題的否定、命題的否定的應(yīng)用等基礎(chǔ)知識.屬于基礎(chǔ)題.命題的否定即命題的對立面.“全稱量詞”與“存在量詞”正好構(gòu)成了意義相反的表述.如“對所有的…都成立”與“至少有一個…不成立”;“都是”與“不都是”等,所以“全稱命題”的否定一定是“存在性命題”,“存在性命題”的否定一定是“全稱命題”.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知$\overrightarrow a=({3,5}),\overrightarrow b=({2,4}),\overrightarrow c=({-3,-2})且\overrightarrow a+λ\overrightarrow b與\overrightarrow c垂直,則實數(shù)λ$=-$\frac{19}{14}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)=2lnx-x2,若方程f(x)+m=0在$[{\frac{1}{e},e}]$內(nèi)有兩個不等的實根,則實數(shù)m的取值范圍是$({1,2+\frac{1}{e^2}}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)雙曲線$\frac{x^2}{a^2}-\frac{y^2}{16}=1(a>0)$的一條漸進(jìn)線方程為2x-y=0,則a的值為( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知i為虛數(shù)單位,復(fù)數(shù)$z=\frac{2i}{-1+2i}$的共軛復(fù)數(shù)為$\frac{4}{5}+\frac{2i}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知兩直線l1:x+my+4=0,l2:(m-1)x+3my+3m=0.若l1∥l2,則m的值為( 。
A.0B.0或4C.-1或$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖,在等腰梯形ABCD中,CD=2AB=2EF=2a,E,F(xiàn)分別是底邊AB,CD的中點,把四邊形BEFC沿直線EF折起,使得平面BEFC⊥平面ADFE.若動點P∈平面ADFE,設(shè)PB,PC與平面ADFE所成的角分別為θ1,θ2(θ1,θ2均不為0).若θ12,則動點P的軌跡圍成的圖形的面積為(  )
A.$\frac{1}{4}{a^2}$B.$\frac{4}{9}{a^2}$C.$\frac{1}{4}π{a^2}$D.$\frac{4}{9}π{a^2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)f(x)=3x+3x-8,用二分法求方程3x+3x-8=0在x∈(1,2)內(nèi)近似解的過程中得f(1)<0,f(1.5)>0,f(1.25)<0,f(2)>0則方程的根應(yīng)落在區(qū)間( 。
A.(1,1.25)B.(1.25,1.5)C.(1.5,2)D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若在正六邊形ABCDEF中,O為其中心,則$\overrightarrow{FA}$+$\overrightarrow{AB}$+2$\overrightarrow{BO}$+$\overrightarrow{ED}$等于(  )
A.$\overrightarrow{FE}$B.$\overrightarrow{AC}$C.$\overrightarrow{DC}$D.$\overrightarrow{FC}$

查看答案和解析>>

同步練習(xí)冊答案