【題目】解關(guān)于x的不等式:(x﹣1)(x+a)>0.
【答案】解:由(x﹣1)(x+a)=0得,x=1或x=﹣a,當(dāng)a<﹣1時(shí),不等式的解集為{x|x>﹣a或x<1};
當(dāng)a=﹣1時(shí),不等式的解集為{x|x∈R且x≠1};
當(dāng)a>﹣1時(shí),不等式的解集為{x|x<﹣a或x>1}.
綜上,當(dāng)a<﹣1時(shí),不等式的解集為{x|x>﹣a或x<1};
當(dāng)a=﹣1時(shí),不等式的解集為{x|x∈R且x≠1};
當(dāng)a>﹣1時(shí),不等式的解集為{x|x<﹣a或x>1}.
【解析】先由不等式:(x﹣1)(x+a)>0,得出其對(duì)應(yīng)方程(x﹣1)(x+a)=0的根的情況,再對(duì)參數(shù)a的取值范圍進(jìn)行討論,分類解不等式
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=x2﹣x,則不等式f(x)>x的解集用區(qū)間表示為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】聯(lián)合國際援助組織計(jì)劃向非洲三個(gè)國家援助糧食和藥品兩種物資,每種物資既可以全部給一個(gè)國家,也可以由其中兩個(gè)或三個(gè)國家均分,若每個(gè)國家都要有物資援助,則不同的援助方案有__________種.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2018·湛江調(diào)研)若直線l與平面α相交,則( )
A. 平面α內(nèi)存在直線與l異面
B. 平面α內(nèi)存在唯一一條直線與l平行
C. 平面α內(nèi)存在唯一一條直線與l垂直
D. 平面α內(nèi)的直線與l都相交
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx+2x﹣6,則它的零點(diǎn)所在的區(qū)間為( )
A.(0,1)
B.(1,2)
C.(2,3)
D.(3,4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:若a>|b|,則a2>b2;命題q:若x2=4,則x=2.下列說法正確的是 ( )
A. “p∨q”為真命題 B. “p∧q”為真命題
C. “p”為真命題 D. “q”為假命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A={x|1≤x≤2},B={y|1≤y≤4},則下述對(duì)應(yīng)法則f中,不能構(gòu)成A到B的映射的是( )
A.f:x→y=x2
B.f:x→y=3x﹣2
C.f:x→y=﹣x+4
D.f:x→y=4﹣x2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com