9.如圖,過點A分別作⊙O的切線AP與割線AC,P為切點,AC與⊙O交于B,C兩點,圓心O在∠PAC的內(nèi)部,BD∥AP,PC與BD交于點N.
(1)在線段BC上是否存在一點M,使A,P,O,M四點共圓?若存在,請確定點M的位置,若不存在,請說明理由.
(2)若CP=CD,證明:CB=CN.

分析 (1)M是BC的中點時,證明對角互補,可得A,P,O,M四點共圓;
(2)利用弦切角定理、圓周角定理及等腰三角形的性質(zhì),即可證明結(jié)論.

解答 (1)解:M是BC的中點時,A,P,O,M四點共圓.
∵M是BC的中點,∴OM⊥AM,
∵AP是圓O的切線,
∴OP⊥PA,
∴∠OMA+∠OPA=180°,
∴A,P,O,M四點共圓.
(2)證明:∵BD∥AP,∴∠APC=∠BNC,
∵AP是圓O的切線,
∴∠APC=∠PDC,
∵CP=CD,
∴∠PDC=∠DPC,
∵∠DPC=∠NBC,
∴∠BNC=∠NBC,
∴CB=CN.

點評 本題考查四點共圓的證明,考查弦切角定理、圓周角定理及等腰三角形的性質(zhì),屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

19.已知等比數(shù)列{an}的各項都是正數(shù),且a4a10=16,則a7=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=$\sqrt{3}$sinxcosx-cos2x-$\frac{1}{2}$.
(1)求函數(shù)y=f(x)在x∈[0,$\frac{π}{2}}$]時的值域;
(2)在△ABC中,角A、B、C所對的邊分別為a、b、c,且滿足c=2,a=3,f(B)=0,求邊b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.函數(shù)f(x)=lnx在點P(x0,f(x0))處的切線l與函數(shù)g(x)=ex的圖象也相切,則滿足條件的切點P的個數(shù)有2個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,$\overrightarrow{a}$-$\overrightarrow$=(${\sqrt{3}$,$\sqrt{2}}$),則|$\overrightarrow{a}$+2$\overrightarrow$|=(  )
A.$2\sqrt{2}$B.$2\sqrt{5}$C.$\sqrt{17}$D.$\sqrt{15}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.甲、乙兩位數(shù)學老師組隊參加某電視臺闖關(guān)節(jié)目,共3關(guān),甲作為嘉賓參與答題,若甲回答錯誤,乙作為親友團在整個通關(guān)過程中至多只能為甲提供一次幫助機會,若乙回答正確,則甲繼續(xù)闖關(guān),若某一關(guān)通不過,則收獲前面所有累積獎金.約定每關(guān)通過得到獎金2000元,設(shè)甲每關(guān)通過的概率為$\frac{3}{4}$,乙每關(guān)通過的概率為$\frac{1}{2}$,且各關(guān)是否通過及甲、乙回答正確與否均相互獨立.
(1)求甲、乙獲得2000元獎金的概率;
(2)設(shè)X表示甲、乙兩人獲得的獎金數(shù),求隨機變量X的分布列和數(shù)學期望E(X).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}m+{x^2}\;\;,\;\;|x|≥1\\ x\;\;\;,\;\;\;\;|x|<1\end{array}$的圖象過點(1,1),函數(shù)g(x)是二次函數(shù),若函數(shù)f(g(x))的值域是[0,+∞),則函數(shù)g(x)的值域是(  )
A.(-∞,1]∪[1,+∞)B.(-∞,-1]∪[0,+∞)C.[0,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知△ABC中,$\frac{c-b}{c-a}$=$\frac{sinA}{sinC+sinB}$,則B=( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.如圖是一個水平放置的透明無蓋的正方體容器,高12cm,將一個球放在容器口,再向容器內(nèi)注水,當球面恰好接觸水面時測得水深為8cm,如果不計容器的厚度,則球的體積為( 。
A.$\frac{169π}{6}$cm3B.$\frac{676π}{3}$cm3C.$\frac{8788π}{3}$cm3D.$\frac{2197π}{6}$cm3

查看答案和解析>>

同步練習冊答案